Skip to main content

Advertisement

Log in

NF-κB signaling in cancer stem cells: a promising therapeutic target?

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Cancer stem cells (CSCs) are regulated by several signaling pathways that ultimately control their maintenance and expansion. NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) forms a protein complex that controls DNA transcription and, as such, plays an important role in proliferation, inflammation, angiogenesis, invasion and metastasis. The NF-κB signaling pathway, which has been found to be constitutively activated in CSCs from a variety of cancers, participates in the maintenance, expansion, proliferation and survival of CSCs. Targeted disruption of this pathway may profoundly impair the adverse phenotype of CSCs and may provide a therapeutic opportunity to remove the CSC fraction. In particular, it may be attractive to use specific NF-κB inhibitors in chronic therapeutic schemes to reduce disease progression. Exceptional low toxicity profiles of these inhibitors are a prerequisite for use in combined treatment regimens and to avoid resistance.

Conclusion

Although still preliminary, recent evidence shows that such targeted strategies may be useful in adjuvant chemo-preventive settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. T. Reya, S.J. Morrison, M.F. Clarke, I.L. Weissman, Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. J. Di, T. Duiveman-de Boer, P.L. Zusterzeel, C.G. Figdor, L.F. Massuger, R. Torensma, The stem cell markers Oct4A, Nanog and c-Myc are expressed in ascites cells and tumor tissue of ovarian cancer patients. Cell. Oncol. 36, 363–374 (2013)

    Article  CAS  Google Scholar 

  3. A. Koren, H. Motaln, T. Cufer, Lung cancer stem cells: a biological and clinical perspective. Cell. Oncol. 36, 265–275 (2013)

    Article  CAS  Google Scholar 

  4. N.A. Lobo, Y. Shimono, D. Qian, M.F. Clarke, The biology of cancer stem cells. Annu. Rev. Cell Dev. Biol. 23, 675–699 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. R. Bjerkvig, B.B. Tysnes, K.S. Aboody, J. Najbauer, A.J. Terzis, Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat. Rev. Cancer 5, 899–904 (2005)

    Article  CAS  PubMed  Google Scholar 

  6. M.S. Hayden, S. Ghosh, Signaling to NF-kappaB. Genes Dev. 18, 2195–2224 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. M.S. Hayden, S. Ghosh, Shared principles in NF-kappaB signaling. Cell 132, 344–362 (2008)

    Article  CAS  PubMed  Google Scholar 

  8. V.F. Shih, R. Tsui, A. Caldwell, A. Hoffmann, A single NFκB system for both canonical and non-canonical signaling. Cell Res. 21, 86–102 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. L. Ling, Z. Cao, D.V. Goeddel, NF-kappaB-inducing kinase activates IKK-alpha by phosphorylation of Ser-176. Proc. Natl. Acad. Sci. U. S. A. 95, 3792–3797 (1998)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. G. Qing, Z. Qu, G. Xiao, Stabilization of basally translated NF-kB-inducing kinase (NIK) protein functions as a molecular switch of processing of NF-kB2 p100. J. Biol. Chem. 280, 40578–40582 (2005)

    Article  CAS  PubMed  Google Scholar 

  11. W.E. Naugler, M. Karin, NF-kappaB and cancer-identifying targets and mechanisms. Curr. Opin. Genet. Dev. 18, 19–26 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. D.K. Biswas, Q. Shi, S. Baily, I. Strickland, S. Ghosh, A.B. Pardee, J.D. Iglehart, NF-kappa B activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proc. Natl. Acad. Sci. U. S. A. 101, 10137–10142 (2004)

  13. J. Bollrath, F.R. Greten, IKK/NF-kappaB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. EMBO Rep. 10, 1314–1319 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. F.R. Greten, L. Eckmann, T.F. Greten, J.M. Park, Z.W. Li, L.J. Egan, M.F. Kagnoff, M. Karin, IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004)

    Article  CAS  PubMed  Google Scholar 

  15. H.L. Pahl, Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18, 6853–6866 (1999)

    Article  CAS  PubMed  Google Scholar 

  16. M. Karin, Nuclear factor-kappaB in cancer development and progression. Nature 441, 431–436 (2006)

    Article  CAS  PubMed  Google Scholar 

  17. E. Bandala, M. Espinosa, V. Maldonado, J. Melendez-Zajgla, Inhibitor of apoptosis-1 (IAP-1) expression and apoptosis in non-small-cell lung cancer cells exposed to gemcitabine. Biochem. Pharmacol. 62, 13–19 (2001)

    Article  CAS  PubMed  Google Scholar 

  18. K. Mohankumar, S. Pajaniradje, S. Sridharan, V.K. Singh, L. Ronsard, A.C. Banerjea, B.C. Selvanesan, M.S. Coumar, L. Periyasamy, R. Rajagopalan, Apoptosis induction by an analog of curcumin (BDMC-A) in human laryngeal carcinoma cells through intrinsic and extrinsic pathways. Cell. Oncol. 37, 439–454 (2014)

    Article  CAS  Google Scholar 

  19. V. Papanikolaou, N. Stefanou, S. Dubos, I. Papathanasiou, M. Palianopoulou, V. Valiakou, A. Tsezou, Synergy of leptin/STAT3 with HER2 receptor induces tamoxifen resistance in breast cancer cells through regulation of apoptosis-related genes. Cell. Oncol. 38, 155–164 (2015)

    Article  CAS  Google Scholar 

  20. X. Dolcet, D. Llobet, J. Pallares, X. Matias-Guiu, NF-kB in development and progression of human cancer. Virchows Archiv : Int. J. Pathol. 446, 475–482 (2005)

    Article  CAS  Google Scholar 

  21. M.A. Huber, N. Azoitei, B. Baumann, S. Grunert, A. Sommer, H. Pehamberger, N. Kraut, H. Beug, T. Wirth, NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J. Clin. Invest. 114, 569–581 (2004)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. C.W. Li, W. Xia, L. Huo, S.O. Lim, Y. Wu, J.L. Hsu, C.H. Chao, H. Yamaguchi, N.K. Yang, Q. Ding, Y. Wang, Y.J. Lai, A.M. LaBaff, T.J. Wu, B.R. Lin, M.H. Yang, G.N. Hortobagyi, M.C. Hung, Epithelial-mesenchymal transition induced by TNF-alpha requires NF-kappaB-mediated transcriptional upregulation of Twist1. Cancer Res. 72, 1290–1300 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. H. Korkaya, S. Liu, M.S. Wicha, Regulation of cancer stem cells by cytokine networks: attacking cancer’s inflammatory roots. Clin. Cancer. Res.: Off. J. Am. Assoc. Cancer Res. 17, 6125–6129 (2011)

    Article  CAS  Google Scholar 

  24. M. Karin, NF-kappaB and cancer: mechanisms and targets. Mol. Carcinog. 45, 355–361 (2006)

    Article  CAS  PubMed  Google Scholar 

  25. M.L. Guzman, S.J. Neering, D. Upchurch, B. Grimes, D.S. Howard, D.A. Rizzieri, S.M. Luger, C.T. Jordan, Nuclear factor-kappa B is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98, 2301–2307 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. V.K. Rajasekhar, L. Studer, W. Gerald, N.D. Socci, H.I. Scher, Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-kappaB signalling. Nat. Commun. 2, 162 (2011)

    Article  PubMed Central  PubMed  Google Scholar 

  27. R. Birnie, S.D. Bryce, C. Roome, V. Dussupt, A. Droop, S.H. Lang, P.A. Berry, C.F. Hyde, J.L. Lewis, M.J. Stower, N.J. Maitland, A.T. Collins, Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biol. 9, R83 (2008)

    Article  PubMed Central  PubMed  Google Scholar 

  28. A.B.. Alvero, R. Chen, H.H. Fu, M. Montagna, P.E. Schwartz, T. Rutherford, D.A. Silasi, K.D. Steffensen, M. Waldstrom, I. Visintin, G. Mor, Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle 8, 158–166 (2009)

  29. M. Murohashi, K. Hinohara, M. Kuroda, T. Isagawa, S. Tsuji, S. Kobayashi, K. Umezawa, A. Tojo, H. Aburatani, N. Gotoh, Gene set enrichment analysis provides insight into novel signalling pathways in breast cancer stem cells. Br. J. Cancer 102, 206–212 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. R. Liu, X. Wang, G.Y. Chen, P. Dalerba, A. Gurney, T. Hoey, G. Sherlock, J. Lewicki, K. Shedden, M.F. Clarke, The prognostic role of a gene signature from tumorigenic breast-cancer cells. N. Engl. J. Med. 356, 217–226 (2007)

    Article  CAS  PubMed  Google Scholar 

  31. J.M. Garner, M. Fan, C.H. Yang, Z. Du, M. Sims, A.M. Davidoff, L.M. Pfeffer, Constitutive activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappaB signaling in glioblastoma cancer stem cells regulates the Notch pathway. J. Biol. Chem. 288, 26167–26176 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Y. Kagoya, A. Yoshimi, K. Kataoka, M. Nakagawa, K. Kumano, S. Arai, H. Kobayashi, T. Saito, Y. Iwakura, M. Kurokawa, Positive feedback between NF-kappaB and TNF-alpha promotes leukemia-initiating cell capacity. J. Clin. Invest. 124, 528–542 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. M.L. Guzman, C.F. Swiderski, D.S. Howard, B.A. Grimes, R.M. Rossi, S.J. Szilvassy, C.T. Jordan, Preferential induction of apoptosis for primary human leukemic stem cells. Proc. Natl. Acad. Sci. U. S. A. 99, 16220–16225 (2002)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. M.L. Guzman, R.M. Rossi, L. Karnischky, X. Li, D.R. Peterson, D.S. Howard, C.T. Jordan, The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 105, 4163–4169 (2005)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. M.L. Guzman, R.M. Rossi, S. Neelakantan, X. Li, C.A. Corbett, D.C. Hassane, M.W. Becker, J.M. Bennett, E. Sullivan, J.L. Lachowicz, A. Vaughan, C.J. Sweeney, W. Matthews, M. Carroll, J.L. Liesveld, P.A. Crooks, C.T. Jordan, An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 110, 4427–4435 (2007)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. H.L. Ang, V. Tergaonkar, Notch and NFkappaB signaling pathways: do they collaborate in normal vertebrate brain development and function? BioEssays: News Rev. Mol. Cell Dev. Biol. 29, 1039–1047 (2007)

    Article  CAS  Google Scholar 

  37. M. Patane, P. Porrati, E. Bottega, S. Morosini, G. Cantini, V. Girgenti, A. Rizzo, M. Eoli, B. Pollo, F.L. Sciacca, S. Pellegatta, G. Finocchiaro, Frequency of NFKBIA deletions is low in glioblastomas and skewed in glioblastoma neurospheres. Mol. Cancer 12, 160 (2013)

    Article  PubMed Central  PubMed  Google Scholar 

  38. M. Tafani, M. Di Vito, A. Frati, L. Pellegrini, E. De Santis, G. Sette, A. Eramo, P. Sale, E. Mari, A. Santoro, A. Raco, M. Salvati, R. De Maria, M.A. Russo, Pro-inflammatory gene expression in solid glioblastoma microenvironment and in hypoxic stem cells from human glioblastoma. J. Neuroinflammation 8, 32 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. A.B.. Hjelmeland, Q. Wu, S. Wickman, C. Eyler, J. Heddleston, Q. Shi, J.D. Lathia, J. Macswords, J. Lee, R.E. McLendon, J.N. Rich, Targeting A20 decreases glioma stem cell survival and tumor growth. PLoS Biol. 8, e1000319 (2010)

  40. L. Nogueira, P. Ruiz-Ontanon, A. Vazquez-Barquero, M. Lafarga, M.T. Berciano, B. Aldaz, L. Grande, I. Casafont, V. Segura, E.F. Robles, D. Suarez, L.F. Garcia, J.A. Martinez-Climent, J.L. Fernandez-Luna, Blockade of the NFkappaB pathway drives differentiating glioblastoma-initiating cells into senescence both in vitro and in vivo. Oncogene 30, 3537–3548 (2011)

    Article  CAS  PubMed  Google Scholar 

  41. D.W. Lee, D. Ramakrishnan, J. Valenta, I.F. Parney, K.J. Bayless, R. Sitcheran, The NF-kappaB RelB protein is an oncogenic driver of mesenchymal glioma. PLoS One 8, e57489 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. D. Iliopoulos, H.A. Hirsch, G. Wang, K. Struhl, Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc. Natl. Acad. Sci. U. S. A. 108, 1397–1402 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. I. Chefetz, A.B.. Alvero, J.C. Holmberg, N. Lebowitz, V. Craveiro, Y. Yang-Hartwich, G. Yin, L. Squillace, M. Gurrea Soteras, P. Aldo, G. Mor, TLR2 enhances ovarian cancer stem cell self-renewal and promotes tumor repair and recurrence. Cell Cycle 12, 511–521 (2013)

  44. H. Long, R. Xie, T. Xiang, Z. Zhao, S. Lin, Z. Liang, Z. Chen, B. Zhu, Autocrine CCL5 signaling promotes invasion and migration of CD133+ ovarian cancer stem-like cells via NF-kappaB-mediated MMP-9 upregulation. Stem Cells 30, 2309–2319 (2012)

    Article  CAS  PubMed  Google Scholar 

  45. R. Chen, A.B.. Alvero, D.A. Silasi, M.G. Kelly, S. Fest, I. Visintin, A. Leiser, P.E. Schwartz, T. Rutherford, G. Mor, Regulation of IKKbeta by miR-199a affects NF-kappaB activity in ovarian cancer cells. Oncogene 27, 4712–4723 (2008)

  46. A.B.. Alvero, H.H. Fu, J. Holmberg, I. Visintin, L. Mor, C.C. Marquina, J. Oidtman, D.A. Silasi, G. Mor, Stem-like ovarian cancer cells can serve as tumor vascular progenitors. Stem Cells 27, 2405–2413 (2009)

  47. M. Shipitsin, L.L. Campbell, P. Argani, S. Weremowicz, N. Bloushtain-Qimron, J. Yao, T. Nikolskaya, T. Serebryiskaya, R. Beroukhim, M. Hu, M.K. Halushka, S. Sukumar, L.M. Parker, K.S. Anderson, L.N. Harris, J.E. Garber, A.L. Richardson, S.J. Schnitt, Y. Nikolsky, R.S. Gelman, K. Polyak, Molecular definition of breast tumor heterogeneity. Cancer Cell 11, 259–273 (2007)

    Article  CAS  PubMed  Google Scholar 

  48. J.H. Ju, K. Jang, K.M. Lee, M. Kim, J. Kim, J.Y. Yi, D.Y. Noh, I. Shin, CD24 enhances DNA damage-induced apoptosis by modulating NF-kappaB signaling in CD44-expressing breast cancer cells. Carcinogenesis 32, 1474–1483 (2011)

    Article  CAS  PubMed  Google Scholar 

  49. M. Liu, T. Sakamaki, M.C. Casimiro, N.E. Willmarth, A.A. Quong, X. Ju, J. Ojeifo, X. Jiao, W.S. Yeow, S. Katiyar, L.A. Shirley, D. Joyce, M.P. Lisanti, C. Albanese, R.G. Pestell, The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. Cancer Res. 70, 10464–10473 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Y. Cao, J.L. Luo, M. Karin, IkappaB kinase alpha kinase activity is required for self-renewal of ErbB2/Her2-transformed mammary tumor-initiating cells. Proc. Natl. Acad. Sci. U. S. A. 104, 15852–15857 (2007)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. W. Zhang, W. Tan, X. Wu, M. Poustovoitov, A. Strasner, W. Li, N. Borcherding, M. Ghassemian, M. Karin, A NIK-IKKalpha module expands ErbB2-induced tumor-initiating cells by stimulating nuclear export of p27/Kip1. Cancer Cell 23, 647–659 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. D. Schramek, A. Leibbrandt, V. Sigl, L. Kenner, J.A. Pospisilik, H.J. Lee, R. Hanada, P.A. Joshi, A. Aliprantis, L. Glimcher, M. Pasparakis, R. Khokha, C.J. Ormandy, M. Widschwendter, G. Schett, J.M. Penninger, Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature 468, 98–102 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. M. Palafox, I. Ferrer, P. Pellegrini, S. Vila, S. Hernandez-Ortega, A. Urruticoechea, F. Climent, M.T. Soler, P. Munoz, F. Vinals, M. Tometsko, D. Branstetter, W.C. Dougall, E. Gonzalez-Suarez, RANK induces epithelial-mesenchymal transition and stemness in human mammary epithelial cells and promotes tumorigenesis and metastasis. Cancer Res. 72, 2879–2888 (2012)

    Article  CAS  PubMed  Google Scholar 

  54. D. Iliopoulos, H.A. Hirsch, K. Struhl, An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139, 693–706 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. H. Korkaya, G.I. Kim, A. Davis, F. Malik, N.L. Henry, S. Ithimakin, A.A. Quraishi, N. Tawakkol, R. D’Angelo, A.K. Paulson, S. Chung, T. Luther, H.J. Paholak, S. Liu, K.A. Hassan, Q. Zen, S.G. Clouthier, M.S. Wicha, Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol. Cell 47, 570–584 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. M.D. Hale, J.D. Hayden, H.I. Grabsch, Tumour-microenvironment interactions: role of tumour stroma and proteins produced by cancer-associated fibroblasts in chemotherapy response. Cell. Oncol. 36, 95–112 (2013)

    Article  CAS  Google Scholar 

  57. M. Yamamoto, Y. Taguchi, T. Ito-Kureha, K. Semba, N. Yamaguchi, J. Inoue, NF-kappaB non-cell-autonomously regulates cancer stem cell populations in the basal-like breast cancer subtype. Nat. Commun. 4, 2299 (2013)

    PubMed  Google Scholar 

  58. G. Storci, P. Sansone, S. Mari, G. D’Uva, S. Tavolari, T. Guarnieri, M. Taffurelli, C. Ceccarelli, D. Santini, P. Chieco, K.B. Marcu, M. Bonafe, TNFalpha up-regulates SLUG via the NF-kappaB/HIF1alpha axis, which imparts breast cancer cells with a stem cell-like phenotype. J. Cell. Physiol. 225, 682–691 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. S.A. Mani, W. Guo, M.J. Liao, E.N. Eaton, A. Ayyanan, A.Y. Zhou, M. Brooks, F. Reinhard, C.C. Zhang, M. Shipitsin, L.L. Campbell, K. Polyak, C. Brisken, J. Yang, R.A. Weinberg, The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. A. Van den Broeck, H. Vankelecom, W. Van Delm, L. Gremeaux, J. Wouters, J. Allemeersch, O. Govaere, T. Roskams, B. Topal, Human pancreatic cancer contains a side population expressing cancer stem cell-associated and prognostic genes. PLoS One 8, e73968 (2013)

    Article  PubMed  Google Scholar 

  61. G. Kallifatidis, V. Rausch, B. Baumann, A. Apel, B.M. Beckermann, A. Groth, J. Mattern, Z. Li, A. Kolb, G. Moldenhauer, P. Altevogt, T. Wirth, J. Werner, P. Schemmer, M.W. Buchler, A.V. Salnikov, I. Herr, Sulforaphane targets pancreatic tumour-initiating cells by NF-kappaB-induced antiapoptotic signalling. Gut 58, 949–963 (2009)

    Article  CAS  PubMed  Google Scholar 

  62. L. Sun, L.A. Mathews, S.M. Cabarcas, X. Zhang, A. Yang, Y. Zhang, M.R. Young, K.D. Klarmann, J.R. Keller, W.L. Farrar, Epigenetic regulation of SOX9 by the NF-kappaB signaling pathway in pancreatic cancer stem cells. Stem Cells 31, 1454–1466 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. K. Vlantis, A. Wullaert, Y. Sasaki, M. Schmidt-Supprian, K. Rajewsky, T. Roskams, M. Pasparakis, Constitutive IKK2 activation in intestinal epithelial cells induces intestinal tumors in mice. J. Clin. Invest. 121, 2781–2793 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. S. Schwitalla, A.A. Fingerle, P. Cammareri, T. Nebelsiek, S.I. Goktuna, P.K. Ziegler, O. Canli, J. Heijmans, D.J. Huels, G. Moreaux, R.A. Rupec, M. Gerhard, R. Schmid, N. Barker, H. Clevers, R. Lang, J. Neumann, T. Kirchner, M.M. Taketo, G.R. van den Brink, O.J. Sansom, M.C. Arkan, F.R. Greten, Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152, 25–38 (2013)

    Article  CAS  PubMed  Google Scholar 

  65. K.B. Myant, P. Cammareri, E.J. McGhee, R.A. Ridgway, D.J. Huels, J.B. Cordero, S. Schwitalla, G. Kalna, E.L. Ogg, D. Athineos, P. Timpson, M. Vidal, G.I. Murray, F.R. Greten, K.I. Anderson, O.J. Sansom, ROS production and NF-kappaB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation. Cell Stem Cell 12, 761–773 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Y. Ben-Neriah, M. Karin, Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat. Immunol. 12, 715–723 (2011)

    Article  CAS  PubMed  Google Scholar 

  67. V. Maldonado, J. Melendez-Zajgla, A. Ortega, Modulation of NF-kappa B, and Bcl-2 in apoptosis induced by cisplatin in HeLa cells. Mutat. Res. 381, 67–75 (1997)

    Article  CAS  PubMed  Google Scholar 

  68. C. Nakanishi, M. Toi, Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat. Rev. Cancer 5, 297–309 (2005)

    Article  CAS  PubMed  Google Scholar 

  69. L. Zhang, X. Ren, Y. Cheng, X. Liu, J.E. Allen, Y. Zhang, Y. Yuan, S.Y. Huang, W. Yang, A. Berg, B.S. Webb, J. Connor, C.G. Liu, Z. Lu, W.S. El-Deiry, J.M. Yang, The NFkappaB inhibitor, SN50, induces differentiation of glioma stem cells and suppresses their oncogenic phenotype. Cancer Biol. Ther. 15, 602–611 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. J.U. Marquardt, L. Gomez-Quiroz, L.O. Arreguin Camacho, F. Pinna, Y.H. Lee, M. Kitade, M.P. Dominguez, D. Castven, K. Breuhahn, E.A. Conner, P.R. Galle, J.B. Andersen, V.M. Factor and S.S. Thorgeirsson, Curcumin effectively inhibits oncogenic NF-kB signaling and restrains stemness features in liver cancer, J. Hepatol. (2015)

  71. B.H. Kwok, B. Koh, M.I. Ndubuisi, M. Elofsson, C.M. Crews, The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IkappaB kinase. Chem. Biol. 8, 759–766 (2001)

    Article  CAS  PubMed  Google Scholar 

  72. K. Liao, B. Xia, Q.Y. Zhuang, M.J. Hou, Y.J. Zhang, B. Luo, Y. Qiu, Y.F. Gao, X.J. Li, H.F. Chen, W.H. Ling, C.Y. He, Y.J. Huang, Y.C. Lin, Z.N. Lin, Parthenolide inhibits cancer stem-like side population of nasopharyngeal carcinoma cells via suppression of the NF-kappaB/COX-2 pathway. Theranostics 5, 302–321 (2015)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. J. Zhou, H. Zhang, P. Gu, J. Bai, J.B. Margolick, Y. Zhang, NF-kappaB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res. Treat. 111, 419–427 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. J.H. Lee, T.H. Koo, H. Yoon, H.S. Jung, H.Z. Jin, K. Lee, Y.S. Hong, J.J. Lee, Inhibition of NF-kappa B activation through targeting I kappa B kinase by celastrol, a quinone methide triterpenoid. Biochem. Pharmacol. 72, 1311–1321 (2006)

    Article  CAS  PubMed  Google Scholar 

  75. D.C. Hassane, M.L. Guzman, C. Corbett, X. Li, R. Abboud, F. Young, J.L. Liesveld, M. Carroll, C.T. Jordan, Discovery of agents that eradicate leukemia stem cells using an in silico screen of public gene expression data. Blood 111, 5654–5662 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. C. Lin, L. Wang, H. Wang, L. Yang, H. Guo, X. Wang, Tanshinone IIA inhibits breast cancer stem cells growth in vitro and in vivo through attenuation of IL-6/STAT3/NF-kB signaling pathways. J. Cell. Biochem. 114, 2061–2070 (2013)

    Article  CAS  PubMed  Google Scholar 

  77. C.H. Leung, S.P. Grill, W. Lam, W. Gao, H.D. Sun, Y.C. Cheng, Eriocalyxin B inhibits nuclear factor-kappaB activation by interfering with the binding of both p65 and p50 to the response element in a noncompetitive manner. Mol. Pharmacol. 70, 1946–1955 (2006)

    Article  CAS  PubMed  Google Scholar 

  78. L. Wang, W.L. Zhao, J.S. Yan, P. Liu, H.P. Sun, G.B. Zhou, Z.Y. Weng, W.L. Wu, X.Q. Weng, X.J. Sun, Z. Chen, H.D. Sun, S.J. Chen, Eriocalyxin B induces apoptosis of t(8;21) leukemia cells through NF-kappaB and MAPK signaling pathways and triggers degradation of AML1-ETO oncoprotein in a caspase-3-dependent manner. Cell Death Differ. 14, 306–317 (2007)

    Article  PubMed  Google Scholar 

  79. A.L. Leizer, A.B.. Alvero, H.H. Fu, J.C. Holmberg, Y.C. Cheng, D.A. Silasi, T. Rutherford, G. Mor, Regulation of inflammation by the NF-kappaB pathway in ovarian cancer stem cells. Am. J. Reprod. Immunol. 65, 438–447 (2011)

  80. Y. Li, T. Zhang, Targeting cancer stem cells with sulforaphane, a dietary component from broccoli and broccoli sprouts. Future Oncol. 9, 1097–1103 (2013)

    Article  CAS  PubMed  Google Scholar 

  81. V. Rausch, L. Liu, G. Kallifatidis, B. Baumann, J. Mattern, J. Gladkich, T. Wirth, P. Schemmer, M.W. Buchler, M. Zoller, A.V. Salnikov, I. Herr, Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cell characteristics. Cancer Res. 70, 5004–5013 (2010)

    Article  CAS  PubMed  Google Scholar 

  82. G. Kallifatidis, S. Labsch, V. Rausch, J. Mattern, J. Gladkich, G. Moldenhauer, M.W. Buchler, A.V. Salnikov, I. Herr, Sulforaphane increases drug-mediated cytotoxicity toward cancer stem-like cells of pancreas and prostate. Mol. Ther. 19, 188–195 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. A. Gomez-Cabrero, W. Wrasidlo, R.A. Reisfeld, IMD-0354 targets breast cancer stem cells: a novel approach for an adjuvant to chemotherapy to prevent multidrug resistance in a murine model. PLoS One 8, e73607 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. J.W. Pierce, R. Schoenleber, G. Jesmok, J. Best, S.A. Moore, T. Collins, M.E. Gerritsen, Novel inhibitors of cytokine-induced I kappa B alpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J. Biol. Chem. 272, 21096–21103 (1997)

    Article  CAS  PubMed  Google Scholar 

  85. A. Ariga, J. Namekawa, N. Matsumoto, J. Inoue, K. Umezawa, Inhibition of tumor necrosis factor-alpha -induced nuclear translocation and activation of NF-kappa B by dehydroxymethylepoxyquinomicin. J. Biol. Chem. 277, 24625–24630 (2002)

    Article  CAS  PubMed  Google Scholar 

  86. K. Hinohara, S. Kobayashi, H. Kanauchi, S. Shimizu, K. Nishioka, E. Tsuji, K. Tada, K. Umezawa, M. Mori, T. Ogawa, J. Inoue, A. Tojo, N. Gotoh, ErbB receptor tyrosine kinase/NF-kappaB signaling controls mammosphere formation in human breast cancer. Proc. Natl. Acad. Sci. U. S. A. 109, 6584–6589 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. J. Adams, The proteasome: a suitable antineoplastic target. Nat. Rev. Cancer 4, 349–360 (2004)

    Article  CAS  PubMed  Google Scholar 

  88. Y. Jin, Z. Lu, K. Ding, J. Li, X. Du, C. Chen, X. Sun, Y. Wu, J. Zhou, J. Pan, Antineoplastic mechanisms of niclosamide in acute myelogenous leukemia stem cells: inactivation of the NF-kappaB pathway and generation of reactive oxygen species. Cancer Res. 70, 2516–2527 (2010)

    Article  CAS  PubMed  Google Scholar 

  89. M.J. Thun, S.J. Henley, C. Patrono, Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J. Natl. Cancer Inst. 94, 252–266 (2002)

    Article  CAS  PubMed  Google Scholar 

  90. W. Qiu, X. Wang, B. Leibowitz, H. Liu, N. Barker, H. Okada, N. Oue, W. Yasui, H. Clevers, R.E. Schoen, J. Yu, L. Zhang, Chemoprevention by nonsteroidal anti-inflammatory drugs eliminates oncogenic intestinal stem cells via SMAC-dependent apoptosis. Proc. Natl. Acad. Sci. U. S. A. 107, 20027–20032 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. A.M. Seo, S.W. Hong, J.S. Shin, I.C. Park, N.J. Hong, D.J. Kim, W.K. Lee, W.J. Lee, D.H. Jin, M.S. Lee, Sulindac induces apoptotic cell death in susceptible human breast cancer cells through, at least in part, inhibition of IKKbeta. Apoptosis: Int. J. Programmed Cell Death 14, 913–922 (2009)

    Article  CAS  Google Scholar 

  92. S.J. Shiff, B. Rigas, The role of cyclooxygenase inhibition in the antineoplastic effects of nonsteroidal antiinflammatory drugs (NSAIDs). J. Exp. Med. 190, 445–450 (1999)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. C.V. Rao, B.S. Reddy, NSAIDs and chemoprevention. Curr. Cancer Drug Targets 4, 29–42 (2004)

    Article  CAS  PubMed  Google Scholar 

  94. C. Zhu, K.W. Cheng, N. Ouyang, L. Huang, Y. Sun, P. Constantinides, B. Rigas, Phosphosulindac (OXT-328) selectively targets breast cancer stem cells in vitro and in human breast cancer xenografts. Stem Cells 30, 2065–2075 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. L. Seguin, S. Kato, A. Franovic, M.F. Camargo, J. Lesperance, K.C. Elliott, M. Yebra, A. Mielgo, A.M. Lowy, H. Husain, T. Cascone, L. Diao, J. Wang, I.I. Wistuba, J.V. Heymach, S.M. Lippman, J.S. Desgrosellier, S. Anand, S.M. Weis, D.A. Cheresh, An integrin beta(3)-KRAS-RalB complex drives tumour stemness and resistance to EGFR inhibition. Nat. Cell Biol. 16, 457–468 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. E.C. Attar, P.C. Amrein, J.W. Fraser, A.T. Fathi, S. McAfee, M. Wadleigh, D.J. Deangelo, D.P. Steensma, R.M. Stone, J. Foster, D. Neuberg, K.K. Ballen, Phase I dose escalation study of bortezomib in combination with lenalidomide in patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Leuk. Res. 37, 1016–1020 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. E.C. Attar, D.J. De Angelo, J.G. Supko, F. D’Amato, D. Zahrieh, A. Sirulnik, M. Wadleigh, K.K. Ballen, S. McAfee, K.B. Miller, J. Levine, I. Galinsky, E.G. Trehu, D. Schenkein, D. Neuberg, R.M. Stone, P.C. Amrein, Phase I and pharmacokinetic study of bortezomib in combination with idarubicin and cytarabine in patients with acute myelogenous leukemia. Clin. Cancer Res. 14, 1446–1454 (2008)

    Article  CAS  PubMed  Google Scholar 

  98. K.G. Troselj, R.N. Kujundzic, Curcumin in combined cancer therapy. Curr. Pharm. Des. 20, 6682–6696 (2014)

    Article  CAS  PubMed  Google Scholar 

  99. R.E. Carroll, R.V. Benya, D.K. Turgeon, S. Vareed, M. Neuman, L. Rodriguez, M. Kakarala, P.M. Carpenter, C. McLaren, F.L. Meyskens Jr., D.E. Brenner, Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev. Res. 4, 354–364 (2011)

  100. L.M. Howells, J. Mahale, S. Sale, L. McVeigh, W.P. Steward, A. Thomas, K. Brown, Translating curcumin to the clinic for lung cancer prevention: evaluation of the preclinical evidence for its utility in primary, secondary, and tertiary prevention strategies. J. Pharmacol. Exp. Ther. 350, 483–494 (2014)

    Article  PubMed  Google Scholar 

  101. S.S. Chung, J.V. Vadgama, Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFkappaB signaling. Anticancer Res. 35, 39–46 (2015)

    PubMed Central  CAS  PubMed  Google Scholar 

  102. P.P. Sordillo, L. Helson, Curcumin and cancer stem cells: curcumin has asymmetrical effects on cancer and normal stem cells. Anticancer Res. 35, 599–614 (2015)

    CAS  PubMed  Google Scholar 

  103. A.M. Alizadeh, M. Sadeghizadeh, F. Najafi, S.K. Ardestani, V. Erfani-Moghadam, M. Khaniki, A. Rezaei, M. Zamani, S. Khodayari, H. Khodayari, M.A. Mohagheghi, Encapsulation of curcumin in diblock copolymer micelles for cancer therapy. Biomed. Res. Int. 2015, 824746 (2015)

    Article  PubMed Central  PubMed  Google Scholar 

  104. M.J. Dehghan Esmatabadi, B. Farhangi, Z. Safari, H. Kazerooni, H. Shirzad, F. Zolghadr, M. Sadeghizadeh, Dendrosomal curcumin inhibits metastatic potential of human SW480 colon cancer cells through down-regulation of claudin1, zeb1 and hef1-1 gene expression. Asian Pac. J. Cancer Prev. 16, 2473–2481 (2015)

    PubMed  Google Scholar 

  105. J.C. Lien, C.M. Hung, Y.J. Lin, H.C. Lin, T.C. Ko, L.C. Tseng, S.C. Kuo, C.T. Ho, J.C. Lee and T. Way, Pculin02H, a curcumin derivative, inhibits proliferation and clinical drug resistance of HER2-overexpressing cancer cells. Chem. Biol. Interact. 235, 17–26 (2015)

  106. V. Zeighamian, M. Darabi, A. Akbarzadeh, M. Rahmati-Yamchi, N. Zarghami, F. Badrzadeh, R. Salehi, F.S. Tabatabaei Mirakabad, M. Taheri-Anganeh, PNIPAAm-MAA nanoparticles as delivery vehicles for curcumin against MCF-7 breast cancer cells. Artif. Cells Nanomed. Biotechnol. 1–8 (2015)

Download references

Acknowledgments

The work at Jorge Melendez-Zajgla laboratory was funded by CONACyT grant 132931.

Conflict of Interest

The authors declare that they have no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Maldonado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vazquez-Santillan, K., Melendez-Zajgla, J., Jimenez-Hernandez, L. et al. NF-κB signaling in cancer stem cells: a promising therapeutic target?. Cell Oncol. 38, 327–339 (2015). https://doi.org/10.1007/s13402-015-0236-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-015-0236-6

Keywords

Navigation