Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Long non-coding RNA SNHG3, induced by IL-6/STAT3 transactivation, promotes stem cell-like properties of gastric cancer cells by regulating the miR-3619-5p/ARL2 axis

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

This article was retracted on 01 February 2022

This article has been updated

Abstract

Background

Chemotherapy is, next to surgery and radiotherapy, the mainstay regimen for the clinical management of gastric cancer. This therapy is, however, heavily compromised by the acquisition of resistance. Here, we aimed to clarify the potential involvement of long non-coding RNA SNGH3 in the acquisition of cisplatin resistance and stemness in gastric cancer.

Methods

Cell viability and proliferation were measured using Cell Counting Kit-8 and colony formation assays, respectively. Stem cell-like cell growth was evaluated using a mammosphere formation assay. RNA levels of SNHG2, OCT-4, SOX-2, CD44, miR-3619-5p and ARL2 were determined using qRT-PCR, whereas protein levels of OCT-4, SOX-2, CD44, ARL2, STAT3 and pSTAT3 were determined using Western blotting. Dual luciferase reporter assays were employed to interrogate regulatory interactions between STAT3, SNHG3, miR-3619-5p and ARL2, respectively. Direct binding of STAT3 to the SNHG3 promoter was investigated using a chromatin immunoprecipitation assay.

Results

We found that IL-6 triggered stem cell-like properties in cisplatin-treated gastric cancer cells and activated STAT3, which in turn transcriptionally regulated SNHG3 expression. SNHG3 expression up-regulation positively correlated with cisplatin resistance and stemness of gastric cancer cells, while SNHG3 down-regulation inhibited stem cell-like properties. In addition, we found that SNHG3 up-regulated ARL2 expression through sponging miR-3619-5p, which predominantly mediated the oncogenic properties of SNHG3 in this disease.

Conclusions

Our data indicate an involvement of aberrant SNHG3 over-expression in the acquisition of both cisplatin resistance and stemness of gastric cancer cells, and of the IL-6/STAT3/SNHG3/miR-3619-5p/ARL2 signaling cascade in the oncogenic properties of SNHG3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

Change history

Abbreviations

lncRNA:

Long non-coding RNA

ChIP:

Chromatinimmunoprecipitation

ATCC:

American Type CultureCollection

CCK-8:

Cell Counting Kit-8

References

  1. E. Van Cutsem, X. Sagaert, B. Topal, K. Haustermans, H. Prenen, Gastric cancer. Lancet 388, 2654–2664 (2016)

    Article  Google Scholar 

  2. F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018)

    Article  Google Scholar 

  3. Y.Y. Lee, M.H. Derakhshan, Environmental and lifestyle risk factors of gastric cancer. Arch. Iran. Med. 16, 358–365 (2013)

    PubMed  Google Scholar 

  4. A. Digklia, A.D. Wagner, Advanced gastric cancer: Current treatment landscape and future perspectives. World J. Gastroenterol. 22, 2403–2414 (2016)

    Article  CAS  Google Scholar 

  5. L. de Mestier, S. Lardiere-Deguelte, J. Volet, R. Kianmanesh, O. Bouche, Recent insights in the therapeutic management of patients with gastric cancer. Dig. Liver Dis. 48, 984–994 (2016)

    Article  Google Scholar 

  6. H. Yoon, N. Kim, Diagnosis and management of high risk group for gastric cancer. Gut Liver 9, 5–17 (2015)

    Article  Google Scholar 

  7. A. Schulenburg, K. Blatt, S. Cerny-Reiterer, I. Sadovnik, H. Herrmann, B. Marian, T.W. Grunt, C.C. Zielinski, P. Valent, Cancer stem cells in basic science and in translational oncology: can we translate into clinical application? J. Hematol. Oncol. 8, 16 (2015)

  8. M.F. Clarke, J.E. Dick, P.B. Dirks, C.J. Eaves, C.H. Jamieson, D.L. Jones, J. Visvader, I.L. Weissman, G.M. Wahlet, Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 66, 9339–9344 (2006)

    Article  CAS  Google Scholar 

  9. M. Najafi, K. Mortezaee, J. Majidpoor, Cancer stem cell (CSC) resistance drivers. Life Sci. 234, 116781 (2019)

    Article  CAS  Google Scholar 

  10. J.J. Quinn, H.Y. Chang, Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17, 47–62 (2016)

    Article  CAS  Google Scholar 

  11. L. Liu, J. Ni, X. He, Upregulation of the long noncoding RNA SNHG3 promotes lung adenocarcinoma proliferation. Dis. Markers 2018, 5736716 (2018)

  12. P.F. Zhang, F. Wang, J. Wu, Y. Wu, W. Huang, D. Liu, X.-Y. Huang, X.-M. Zhang, Ai.Wu. Ke, LncRNA SNHG3 induces EMT and sorafenib resistance by modulating the miR-128/CD151 pathway in hepatocellular carcinoma. J. Cell. Physiol. 234, 2788–2794 (2019)

    Article  CAS  Google Scholar 

  13. L. Hong, W. Chen, D. Wu, Y. Wang, Upregulation of SNHG3 expression associated with poor prognosis and enhances malignant progression of ovarian cancer. Cancer Biomark. 22, 367–374 (2018)

    Article  CAS  Google Scholar 

  14. N. Li, X. Zhan, X. Zhan, The lncRNA SNHG3 regulates energy metabolism of ovarian cancer by an analysis of mitochondrial proteomes. Gynecol. Oncol. 150, 343–354 (2018)

    Article  CAS  Google Scholar 

  15. W. Huang, Y. Tian, S. Dong, Y. Cha, J. Li, X. Guo, X. Yuan, The long non-coding RNA SNHG3 functions as a competing endogenous RNA to promote malignant development of colorectal cancer. Oncol. Rep. 38, 1402–1410 (2017)

    Article  CAS  Google Scholar 

  16. Y. Xuan, Y. Wang, Long non-coding RNA SNHG3 promotes progression of gastric cancer by regulating neighboring MED18 gene methylation. Cell Death Dis. 10, 694 (2019)

    Article  Google Scholar 

  17. J. Long, C. Jiang, B. Liu, Q. Dai, R. Hua, C. Chen, B. Zhang, H. Li, Maintenance of stemness by miR-589-5p in hepatocellular carcinoma cells promotes chemoresistance via STAT3 signaling. Cancer Lett. 423, 113–126 (2018)

    Article  CAS  Google Scholar 

  18. Z. Zhang, Q. Duan, H. Zhao, T. Liu, H. Wu, Q. Shen, C. Wang, T. Yin, Gemcitabine treatment promotes pancreatic cancer stemness through the Nox/ROS/NF-kappaB/STAT3 signaling cascade. Cancer Lett. 382, 53–63 (2016)

    Article  CAS  Google Scholar 

  19. Y. Ning, Y. Cui, X. Li, X. Cao, A. Chen, C. Xu,  J. Cao, X. Luo, Co-culture of ovarian cancer stem-like cells with macrophages induced SKOV3 cells stemness via IL-8/STAT3 signaling. Biomed. Pharmacother. 103, 262–271 (2018)

    Article  CAS  Google Scholar 

  20. T. Wang, J.F. Fahrmann, H. Lee, Y.J. Li, S.C. Tripathi, C. Yue, G. Somlo, R. Jandial, D. Ann, S. Hanash, R. Jove, H. Yu, JAK/STAT3-regulated fatty acid beta-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab. 27, 1357 (2018)

    Article  CAS  Google Scholar 

  21. W. He, J. Wu, J. Shi, Y.M. Huo, W. Dai, J. Geng, L. Ping, Y. Min-Wei, F. Yuan, W. Wei, Z.-G. Zhang, A. Habtezion, Y.-W. Sun, J. Xue, IL22RA1/STAT3 signaling promotes stemness and tumorigenicity in pancreatic cancer. Cancer Res. 78, 3293–3305 (2018)

    Article  CAS  Google Scholar 

  22. C. Zhang, S. Mukherjee, C. Tucker-Burden, J.L. Ross, M.J. Chau, J. Kong, D.J. Brat, TRIM8 regulates stemness in glioblastoma through PIAS3-STAT3. Mol. Oncol. 11, 280–294 (2017)

    Article  CAS  Google Scholar 

  23. Y. An, B. Wang, X. Wang, G. Dong, J. Jia, Q. Yang, SIRT1 inhibits chemoresistance and cancer stemness of gastric cancer by initiating an AMPK/FOXO3 positive feedback loop. Cell Death Dis. 11, 115 (2020)

    Article  Google Scholar 

  24. Y. Liu, H. Chen, P.M. Zheng, Y.X. Zheng, Q. Luo, G.H. Xie, Y. Ma, L. Shen, ICG-001 suppresses growth of gastric cancer cells and reduces chemoresistance of cancer stem cell-like population. J. Exp. Clin. Canc. Res. 36, (2017)

  25. X.D. Peng, Q.J. Kang, R. Wan, Z.W. Wang, miR-26a/HOXC9 dysregulation promotes metastasis and stem cell-like phenotype of gastric cancer. Cell. Physiol. Biochem. 49, 1659–1676 (2018)

    Article  CAS  Google Scholar 

  26. E. Charafe-Jauffret, C. Ginestier, F. Iovino, C. Tarpin, M. Diebel, B. Esterni, G. Houvenaeghel, J.-M. Extra, F. Bertucci, J. Jacquemier, L. Xerri, G. Dontu, G. Stassi, Y. Xiao, S.H. Barsky, D. Birnbaum, P. Viens, M.S. Wicha, Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin. Cancer Res. 16, 45–55 (2010)

    Article  CAS  Google Scholar 

  27. G.H. Xu, J. Shen, X.H.O. Yang, M. Sasahara, X.L. Su, Cancer stem cells: the ‘heartbeat’ of gastric cancer. J. Gastroenterol. 48, 781–797 (2013)

    Article  CAS  Google Scholar 

  28. L. Salmena, L. Poliseno, Y. Tay, L. Kats, P.P. Pandolfi, A ceRNA hypothesis: the Rosetta Stone of a hidden RNA. language? Cell 146, 353–358 (2011)

    Article  CAS  Google Scholar 

  29. S. Zheng, F. Jiang, D. Ge, J. Tang, H. Chen, J. Yang, Y. Yao, J. Yan,  J. Qiu, Z. Yin, Y. Ni, L. Zhao, X. Chen, H. Li, L. Yang, LncRNA SNHG3/miRNA-151a-3p/RAB22A axis regulates invasion and migration of osteosarcoma. Biomed. Pharmacother. 112, 108695 (2019)

    Article  CAS  Google Scholar 

  30. J. Chen, Z. Wu, Y. Zhang, LncRNA SNHG3 promotes cell growth by sponging miR-196a-5p and indicates the poor survival in osteosarcoma. Int. J. Immunopathol. Pharmacol. 33, 2058738418820743 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. L. Wang, K. Su, H. Wu, J. Li, D. Song, LncRNA SNHG3 regulates laryngeal carcinoma proliferation and migration by modulating the miR-384/WEE1 axis. Life Sci. 232, 116597 (2019)

    Article  CAS  Google Scholar 

  32. Q. Zhao, C. Wu, J. Wang, X. Li, Y. Fan, S. Gao, K. Wang, LncRNA SNHG3 promotes hepatocellular tumorigenesis by targeting miR-326. Tohoku. J. Exp. Med. 249, 43–56 (2019)

    Article  CAS  Google Scholar 

  33. X. Niu, S. Liu, L. Jia, J. Chen, Role of MiR-3619-5p in beta-catenin-mediated non-small cell lung cancer growth and invasion. Cell. Physiol. Biochem. 37, 1527–1536 (2015)

    Article  CAS  Google Scholar 

  34. Q. Zhang, S. Miao, X. Han, C. Li, M. Zhang, K. Cui, T. Xiong, Z. Chen, C. Wang, H. Xu, MicroRNA-3619-5p suppresses bladder carcinoma progression by directly targeting beta-catenin and CDK2 and activating p21. Cell Death Dis. 9, 960 (2018)

    Article  Google Scholar 

  35. A. Tan, Q. Li, L. Chen, CircZFR promotes hepatocellular carcinoma progression through regulating miR-3619-5p/CTNNB1 axis and activating Wnt/beta-catenin pathway. Arch. Biochem. Biophys. 661, 196–202 (2019)

    Article  CAS  Google Scholar 

  36. K. Fite, J. Gomez-Cambronero, Down-regulation of microRNAs (MiRs) 203, 887, 3619 and 182 prevents vimentin-triggered, phospholipase D (PLD)-mediated cancer cell invasion. J. Biol. Chem. 291, 719–730 (2016)

    Article  CAS  Google Scholar 

  37. S. Li, C. Wang, X. Yu, H. Wu, J. Hu, S. Wang, Z. Ye, miR-3619-5p inhibits prostate cancer cell growth by activating CDKN1A expression. Oncol. Rep. 37, 241–248 (2017)

    Article  Google Scholar 

  38. M. Zhang, H. Luo, L. Hui, MiR-3619-5p hampers proliferation and cisplatin resistance in cutaneous squamous-cell carcinoma via KPNA4. Biochem. Biophys. Res. Commun. 513, 419–425 (2019)

    Article  CAS  Google Scholar 

  39. R. Peng, J. Men, R. Ma, Q. Wang, Y. Wang, Y. Sun, J. Ren, miR-214 down-regulates ARL2 and suppresses growth and invasion of cervical cancer cells. Biochem. Biophys. Res. Commun. 484, 623–630 (2017)

    Article  CAS  Google Scholar 

  40. K. Taniuchi, S. Iwasaki, T. Saibara, BART inhibits pancreatic cancer cell invasion by inhibiting ARL2-mediated RhoA inactivation. Int. J. Oncol. 39, 1243–1252 (2011)

    CAS  PubMed  Google Scholar 

  41. Y. Wang, G. Guan, W. Cheng, Y. Jiang, F. Shan, A. Wu,  P. Cheng, Z. Guo, ARL2 overexpression inhibits glioma proliferation and tumorigenicity via down-regulating AXL. BMC Cancer. 18, 599 (2018)

    Article  Google Scholar 

  42. A. Beghin, S. Belin, R. Hage-Sleiman, S. Brunet Manquat, S. Goddard, E. Tabone, L.P. Jordheim, I. Treilleux, M.-F. Poupon, J.-J. Diaz, C. Dumontet, ADP ribosylation factor like 2 (Arl2) regulates breast tumor aggressivity in immunodeficient mice. PLoS One 4, e7478 (2009)

Download references

Funding

This work was supported by Shanghai Anticancer Association “aoxiang” Project (SACA-AX201901).

Author information

Authors and Affiliations

Authors

Contributions

Bo Sun, Yang Han, Hong Cai, Hua Huang and Yi Xuan collected and assembled the data. Bo Sun and Yang Han performed the statistical analyses. Hong Cai and Yi Xuan conceived and designed the study and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hong Cai, Hua Huang or Yi Xuan.

Ethics declarations

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the authors.

Consent for publication

All of the authors have approved publication of this work.

Ethics approval and consent to participate

The study was approved by the Institutional Ethics Committee of Fudan University Shanghai Cancer Center and performed in strict accordance to NIH guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s13402-022-00662-z

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., Han, Y., Cai, H. et al. RETRACTED ARTICLE: Long non-coding RNA SNHG3, induced by IL-6/STAT3 transactivation, promotes stem cell-like properties of gastric cancer cells by regulating the miR-3619-5p/ARL2 axis. Cell Oncol. 44, 179–192 (2021). https://doi.org/10.1007/s13402-020-00560-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-020-00560-2

Keywords

Navigation