Skip to main content
Log in

Temporal changes in oxidative stress and antioxidant activities in Ulva pertusa Kjellman

  • Research Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Temporal changes in the oxidative stress and antioxidant system in Ulva pertusa Kjellman collected in July, September, and November was evaluated. The lipid peroxidation was decreased in September and re-increased in November. Glutathione, the major thiol antioxidant molecule, was mostly in reduced form in September, but the glutathione was more oxidized and the content was significantly decreased in November. Glutamylcysteine ligase (GCL), the rate limiting enzyme for glutathione synthesis, activity was increased in September and November. Among the enzymes for glutathione recycling, the glutathione peroxidase (GPx) activity was highest in September, while the glutathione reductase (GRd) activity was highest in November. The superoxide dismutase (SOD) activity was significantly increased after September. The results suggest that reduced oxidative stress in September was due to the increased ROS scavenging capacity. The elevated oxidative stress in November indicates that the ROS generation should be exceedingly high despite the adaptively increased GCL, GRd, and SOD activities in cold season. Catalase activity was decreased after September, which might be relevant to the control of hydrogen peroxide concentration as a signaling molecule to modulate intrinsic seasonal changes in the algal metabolism rather than to the antioxidant function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fridovich, I. Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Ann. N. Y. Acad. Sci. 893, 13–18 (1999).

    Article  PubMed  CAS  Google Scholar 

  2. Asada, K. The water cycle in chloroplast: scavenging of active oxygen and dissipation of excess photon. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 50, 601–639 (1999).

    Article  PubMed  CAS  Google Scholar 

  3. Lohrmann, N. L., Logan, B. A. & Johson, A. S. Seasonal acclimation of antioxidants and photosynthesis in chondrus cripus and Mastocarpus stellatus, Two cooccuring red algae with differing stress tolerances. Biol. Bull. 207, 225–232 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. Vrablikova, H., Bartak, M. & Wonisch, A. Changes in glutathione and xanthophyll cycle pigments in the high light-stressed lichens Umbilicaria antarctica and Lasallia pustulata. J. Photochem. Photobiol. B. 79, 35–41 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. Pätsikkä, E., Aro, E.-M. & Tyystjärvi, E. Increase in the quantum yield of photoinhibition contributes to copper toxicity in vivo. Plant Physio. 117, 619–627 (1998).

    Article  Google Scholar 

  6. Noctor, G. & Foyer, C. H. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 49, 249–279 (1998).

    Article  PubMed  CAS  Google Scholar 

  7. Burritt, D. J., Larkindale, J. & Hurd, C. L. Antioxidant metabolism in the intertidal red seaweed Stictosiphonia arbuscula following desiccation. Planta 215, 829–838 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. Cavas, L. & Yurdakoc, K. A. Comparative study: assessment of the antioxidant system in the invasive green alga Caulerpa racemosa and some macrophtes from the Mediterranean. J. Exp. Mar. Biol. Ecol. 321, 35–41 (2005).

    Article  CAS  Google Scholar 

  9. Niyogi, K. K. Photoprotection revisited: genetic and molecular approaches. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 50, 333–359 (1999).

    Article  PubMed  CAS  Google Scholar 

  10. Baker, N. R. in Causes of Photooxidative Stress and Amelioration of Defense System in Plant (eds Foyer, C & Mullineaux, P.) 127–154 (CRC Press, Boca Raton, FL, 1994).

    Google Scholar 

  11. Wise, R. R. Chilling-enhanced photooxidation: The production, action, and study of reactive oxygen species produced during chilling in the light. Photosynth. Res. 45, 79–97 (1995).

    Article  CAS  Google Scholar 

  12. Logan, B. A., Demmig-Adams, B., Adams, W. W. & Grace, S. C. Antioxidation and xanthopgyll cycle-dependent energy dissipation in Cucurbita pepo and Vinca major acclimates to four growth irradiances in the field. J. Exp. Bot. 49, 1869–1879 (1998).

    Article  CAS  Google Scholar 

  13. Lyons, N. M. & O’Brien, N. M. Modulatory effects of an algal extract containing astaxanthin on UVA-irradiated cells in culture. J. Dermatol. Sci. 30, 73–84 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. Han, T., Kang, S. H., Park, J. S., Lee, H. K. & Brown, M. T. Physiological responses of Ulva pertusa and U. armoricana to copper exposure. Aquat. Toxicol. 86, 176–184 (2008).

    Article  PubMed  CAS  Google Scholar 

  15. Margis, R., Dunand, C., Teixeira, F. K. & Margis-Pinheiro, M. Glutathione peroxidase family — an evolutionary overview. Febs J. 275, 3959–3970 (2008).

    Article  PubMed  CAS  Google Scholar 

  16. Bandyopadhyay, S., Starke, D. W., Mieyal, J. J. & Gronostajski, R. M. Thioltransferase (glutaredoxin) reactivates the DNA-binding activity of oxidationinactivated nuclear factor I. J. Biol. Chem. 273, 392–397 (1998).

    Article  PubMed  CAS  Google Scholar 

  17. Klatt, P. et al. Redox regulation of c-Jun DNA binding by reversible S-glutathiolation. Faseb J. 13, 1481–1490 (1999).

    PubMed  CAS  Google Scholar 

  18. Rokutan, K. et al. Glutathione depletion inhibits oxidant-induced activation of nuclear factor-kappa B, AP-1, and c-Jun/ATF-2 in cultured guinea-pig gastric epithelial cells. J. Gastroenterol. 33, 646–655 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. Slesak, I., Libik, M., Karpinska, B., Karpinski, S. & Miszalski, Z. The role of hydrogen peroxide in regulation of plant metabolism and cellular signaling in response to environmental atresses. Acta. Biochem. Pol. 54, 39–50 (2007).

    CAS  Google Scholar 

  20. Noctor, G., Veljovic-Jovanovic, S. & Foyer, C. H. Peroxide processing in photosynthesis: antioxidant coupling and redox signaling. Phil. Trans R. Soc. Lond B. 355, 1465–1475 (2000).

    Article  CAS  Google Scholar 

  21. Shao, N., Beck, C. F., Lemaire, S. D., & Krieger-Liszkay, A. Photosynthetic electron flow affects H2O2 signaling by inactivation of catalase in Chlamydomonas reinhardtii. Planta 2008, 1055–1066 (2008).

    Article  Google Scholar 

  22. Ohkawa, H., Ohishi, N. & Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358 (1979).

    Article  PubMed  CAS  Google Scholar 

  23. Park, E. M., Park, Y. M. & Gwak, Y. S. Oxidative damage in tissues of rats exposed to cigarette smoke. Free Radic. Biol. Med. 25, 79–86 (1998).

    Article  PubMed  CAS  Google Scholar 

  24. Reed, D. J. et al. High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide, and related thiols and disulfides. Anal. Biochem. 106, 55–62 (1980).

    Article  PubMed  CAS  Google Scholar 

  25. Seelig, G. F. & Meister, A. Gamma-glutamylcysteine synthetase from erythrocytes. Anal. Biochem. 141, 510–514 (1984).

    Article  PubMed  CAS  Google Scholar 

  26. Paglia, D. E. & Valentine, W. N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70, 158–169 (1967).

    PubMed  CAS  Google Scholar 

  27. Cohen, M. B. & Duvel, D. L. Characterization of the inhibition of glutathione reductase and the recovery of enzyme activity in exponentially growing murine leukemia (L1210) cells treated with 1,3-bis (2-chloroethyl)-1-nitrosourea. Biochem. Pharmacol. 37, 3317–3320 (1988).

    Article  PubMed  CAS  Google Scholar 

  28. McCord, J. M. & Fridovich, I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049–6055 (1969).

    PubMed  CAS  Google Scholar 

  29. Aebi, H. Catalase in vitro. Methods Enzymol. 105, 121–126 (1984).

    Article  PubMed  CAS  Google Scholar 

  30. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  31. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taejun Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, EM., Park, JJ. & Han, T. Temporal changes in oxidative stress and antioxidant activities in Ulva pertusa Kjellman. Toxicol. Environ. Health Sci. 3, 206–212 (2011). https://doi.org/10.1007/s13530-011-0106-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-011-0106-1

Keywords

Navigation