Skip to main content
Log in

Few-Neutron Systems with the Long-Range Casimir-Polder Force

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work, we present results of the long-range electromagnetic Casimir-Polder interactions between two neutrons, a neutron and a conducting wall, and a neutron between two walls. As input, we use the dynamic dipole polarizabilities of the neutron fitted to chiral EFT results up to the pion production threshold and at the onset of the Delta resonance. Our work can be relevant to the physics of confined ultracold neutrons inside bottles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L. Spruch, Long-range (Casimir) interactions. Science. 272(5267), 1452 (1996). https://doi.org/10.1126/science.272.5267.1452

    Article  ADS  Google Scholar 

  2. L. Spruch, A. Stange, D.K. Campbell, D.J. Bishop, . Phys. Today. 74(1), 42 (2021). https://doi.org/10.1063/PT.3.4656

    Article  Google Scholar 

  3. A. W. Rodriguez, P. C. Hui, D. P. Woolf, S. G. Johnson, M. Lončar, F. Capasso, Classical and fluctuation-induced electromagnetic interactions in micron-scale systems: designer bonding, antibonding, and Casimir forces. Annalen der Physik. 527(1-2), 45 (2015). https://doi.org/10.1002/andp.201400160

    Article  ADS  Google Scholar 

  4. L.H. Ford, M.P. Hertzberg, J. Karouby, Quantum gravitational force between polarizable objects. Phys. Rev. Lett. 116(15), 151301 (2016). https://doi.org/10.1103/PhysRevLett.116.151301

    Article  ADS  Google Scholar 

  5. P. W. Milonni, M. L. Shih, Casimir forces. Contemp. Phys. 33, 313 (1992). https://doi.org/10.1080/00107519208223981

    Article  ADS  Google Scholar 

  6. H.B.G. Casimir, Sur les forces Van der Waals-London. J. Chim. Phys. 46, 407 (1949). https://doi.org/10.1051/jcp/1949460407

    Article  Google Scholar 

  7. J. F. Babb. Adv. At. Molec. Opt. Phys., ed. by E. Arimondo, P.R. Berman, C.C. Lin, Vol. 59 (Academic, San Diego, 2010), pp. 1–20, https://doi.org/10.1016/S1049-250X(10)59001-3

  8. H. B. G. Casimir, D. Polder, The influence of retardation on the London-van der Waals forces. Phys. Rev. 73, 360 (1948). https://doi.org/10.1103/PhysRev.73.360

    Article  ADS  MATH  Google Scholar 

  9. L. Spruch, E. J. Kelsey, Vacuum fluctuation and retardation effects on long-range potentials. Phys. Rev. A. 18(3), 845 (1978). https://doi.org/10.1103/PhysRevA.18.845

    Article  ADS  Google Scholar 

  10. G. Feinberg, J. Sucher, General theory of the van der Waals interaction: A model-independent approach. Phys. Rev. A. 2(6), 2395 (1970). https://doi.org/10.1103/PhysRevA.2.2395

    Article  ADS  Google Scholar 

  11. J. Bernabéu, R. Tarrach, Long-range potentials and the electromagnetic polarizabilities. Ann. Phys. (N.Y.) 102(1), 323 (1976). https://doi.org/10.1016/0003-4916(76)90265-7

    Article  ADS  Google Scholar 

  12. G. Feinberg, J. Sucher, Long-range forces between a charged and neutral system. Phys. Rev. A. 27(4), 1958 (1983). https://doi.org/10.1103/PhysRevA.27.1958

    Article  ADS  Google Scholar 

  13. J. F. Babb, R. Higa, M. S. Hussein, Dipole-dipole dispersion interactions between neutrons. Eur. Phys. J. A. 53(6), 126 (2017). https://doi.org/10.1140/epja/i2017-12313-7

    Article  ADS  MATH  Google Scholar 

  14. L. G. Arnold, Neutron polarizability and the two-neutron scattering length. Phys. Lett. B. 44 (5), 401 (1973). https://doi.org/10.1016/0370-2693(73)90318-3

    Article  ADS  Google Scholar 

  15. M. S. Hussein, J. F. Babb, R. Higa, The Casimir-Polder interaction between two neutrons and possible relevance to tetraneutron states. Acta Phys. Pol. B. 48(10), 1837 (2017). https://doi.org/10.5506/APhysPolB.48.1837

    Article  ADS  Google Scholar 

  16. F. Hagelstein, R. Miskimen, V. Pascalutsa, Nucleon polarizabilities: From Compton scattering to hydrogen atom. Prog. Part. Nucl. Phys. 88, 29 (2016). https://doi.org/10.1016/j.ppnp.2015.12.001

    Article  ADS  Google Scholar 

  17. I. Guiaşu, E. Radescu, Higher multipole polarizabilities of hadrons from compton scattering amplitudes. Ann. Phys. (N. Y.) 120(1), 145 (1979). https://doi.org/10.1016/0003-4916(79)90285-9

    Article  ADS  Google Scholar 

  18. M. Lundin, J. O. Adler, M. Boland, K. Fissum, T. Glebe, K. Hansen, L. Isaksson, O. Kaltschmidt, M. Karlsson, K. Kossert, M. I. Levchuk, P. Lilja, B. Lindner, A. I. L’vov, B. Nilsson, D. E. Oner, C. Poech, S. Proff, A. Sandell, B. Schröder, M. Schumacher, D. A. Sims, Compton scattering from the deuteron and extracted neutron polarizabilities. Phys. Rev. Lett. 90, 192501 (2003). https://doi.org/10.1103/PhysRevLett.90.192501

    Article  ADS  Google Scholar 

  19. L. S. Myers, J. R. M. Annand, J. Brudvik, G. Feldman, K. G. Fissum, H.W. Grießhammer, K. Hansen, S.S. Henshaw, L. Isaksson, R. Jebali, M.A. Kovash, M. Lundin, J.A. McGovern, D.G. Middleton, A.M. Nathan, D.R. Phillips, B. Schröder, S.C. Stave, Measurement of compton scattering from the deuteron and an improved extraction of the neutron electromagnetic polarizabilities. Phys. Rev. Lett. 113, 262506 (2014). https://doi.org/10.1103/PhysRevLett.113.262506

    Article  ADS  Google Scholar 

  20. J. Annand, B. Strandberg, H. J. Arends, A. Thomas, E. Downie, D. Hornidge, M. Morris, V. Sokoyan, Compton scattering from 3 he using an active target. PoS Proc. Sci. CD15, 092 (2016). https://doi.org/10.22323/1.253.0092

    Article  Google Scholar 

  21. J. Schmiedmayer, P. Riehs, J. A. Harvey, N. W. Hill, Measurement of the electric polarizability of the neutron. Phys. Rev. Lett. 66, 1015 (1991). https://doi.org/10.1103/PhysRevLett.66.1015

    Article  ADS  Google Scholar 

  22. H. Griesshammer, J. McGovern, D. Phillips, G. Feldman, Using effective field theory to analyse low-energy Compton scattering data from protons and light nuclei. Prog. Part. Nucl. Phys. 67, 841 (2012). https://doi.org/10.1016/j.ppnp.2012.04.003

    Article  ADS  Google Scholar 

  23. V. Lensky, J. A. McGovern, V. Pascalutsa, Predictions of covariant chiral perturbation theory for nucleon polarisabilities and polarised Compton scattering. Eur. Phys. J. D. 75, 604 (2015). https://doi.org/10.1140/epjc/s10052-015-3791-0

    Article  Google Scholar 

  24. C. Patrignani, et al., Review of particle physics. Chin. Phys. C. 40(10), 100001 (2016). https://doi.org/10.1088/1674-1137/40/10/100001

    Article  ADS  Google Scholar 

  25. K. Kossert, et al., Quasifree Compton scattering and the polarizabilities of the neutron. Eur. Phys. J. A. 16, 259 (2003). https://doi.org/10.1140/epja/i2002-10093-9

    Article  ADS  Google Scholar 

  26. R. P. Hildebrandt, H. W. Griesshammer, T. R. Hemmert, B. Pasquini, Signatures of chiral dynamics in low-energy compton scattering off the nucleon. Eur. Phys. J. A. 20, 293 (2004). https://doi.org/10.1140/epja/i2003-10144-9

    Article  ADS  Google Scholar 

  27. R. Higa, J. F. Babb, M. S. Hussein, Dipole-dipole interactions between neutrons. Springer Proc. Phys. 238, 873 (2020). https://doi.org/10.1007/978-3-030-32357-8_137

    Article  MATH  Google Scholar 

  28. M. O’Carroll, J. Sucher, Arctangent approximation to the intermolecular potential. Phys. Rev. 187(1), 85 (1969). https://doi.org/10.1103/PhysRev.187.85

    Article  ADS  Google Scholar 

  29. F. Zhou, L. Spruch, van der Waals and retardation (Casimir) interactions of an electron or an atom with multilayered walls. Phys. Rev. A. 52(1), 297 (1995). https://doi.org/10.1103/PhysRevA.52.297

    Article  ADS  Google Scholar 

  30. Z. C. Yan, A. Dalgarno, J. F. Babb, Long-range interactions of lithium atoms. Phys. Rev. A. 55(4), 2882 (1997). https://doi.org/10.1103/PhysRevA.55.2882

    Article  ADS  Google Scholar 

  31. T. H. Boyer, Recalculations of long-range van der Waals potentials. Phys. Rev. 180(1), 19 (1969). https://doi.org/10.1103/PhysRev.180.19

    Article  ADS  Google Scholar 

  32. A. M. Shirokov, G. Papadimitriou, A. I. Mazur, I. A. Mazur, R. Roth, J. P. Vary, Prediction for a four-neutron resonance. Phys. Rev. Lett. 117, 182502 (2016). https://doi.org/10.1103/PhysRevLett.117.182502

    Article  ADS  Google Scholar 

  33. S. Gandolfi, H. W. Hammer, P. Klos, J. E. Lynn, A. Schwenk, Is a trineutron resonance lower in energy than a tetraneutron resonance?. Phys. Rev. Lett. 118, 232501 (2017). https://doi.org/10.1103/PhysRevLett.118.232501

    Article  ADS  Google Scholar 

  34. K. Fossez, J. Rotureau, N. Michel, M. Płoszajczak, Can tetraneutron be a narrow resonance? Phys. Rev. Lett. 119, 032501 (2017). https://doi.org/10.1103/PhysRevLett.119.032501

    Article  ADS  Google Scholar 

  35. E. Hiyama, R. Lazauskas, J. Carbonell, M. Kamimura, Possibility of generating a 4-neutron resonance with a T = 3/2 isospin 3-neutron force. Phys. Rev. C. 93, 044004 (2016). https://doi.org/10.1103/PhysRevC.93.044004

    Article  ADS  Google Scholar 

  36. A. Deltuva, R. Lazauskas, Comment on “Is a Trineutron Resonance Lower in Energy than a Tetraneutron Resonance?” Phys. Rev. Lett. 123, 069201 (2019). https://doi.org/10.1103/PhysRevLett.123.069201

    Article  ADS  Google Scholar 

  37. K. Kisamori, S. Shimoura, H. Miya, S. Michimasa, S. Ota, M. Assie, H. Baba, T. Baba, D. Beaumel, M. Dozono, T. Fujii, N. Fukuda, S. Go, F. Hammache, E. Ideguchi, N. Inabe, M. Itoh, D. Kameda, S. Kawase, T. Kawabata, M. Kobayashi, Y. Kondo, T. Kubo, Y. Kubota, M. Kurata-Nishimura, C. S. Lee, Y. Maeda, H. Matsubara, K. Miki, T. Nishi, S. Noji, S. Sakaguchi, H. Sakai, Y. Sasamoto, M. Sasano, H. Sato, Y. Shimizu, A. Stolz, H. Suzuki, M. Takaki, H. Takeda, S. Takeuchi, A. Tamii, L. Tang, H. Tokieda, M. Tsumura, T. Uesaka, K. Yako, Y. Yanagisawa, R. Yokoyama, K. Yoshida, Candidate resonant tetraneutron state populated by the 4He(8He,8Be) Reaction. Phys. Rev. Lett. 116, 052501 (2016). https://doi.org/10.1103/PhysRevLett.116.052501

    Article  ADS  Google Scholar 

  38. M. S. Hussein, C. L. Lima, M. P. Pato, C. A. Bertulani, Color van der Waals force acting in heavy-ion scattering at low energies. Phys. Rev. Lett. 65(7), 839 (1990). https://doi.org/10.1103/PhysRevLett.65.839

    Article  ADS  Google Scholar 

  39. T. Appelquist, W. Fischler, Some remarks on van der Waals forces in QCD. Phys. Lett. B. 77 (4-5), 405 (1978). https://doi.org/10.1016/0370-2693(78)90587-7

    Article  ADS  Google Scholar 

  40. G. Feinberg, J. Sucher, Is there a strong van der Waals force between hadrons? Phys. Rev. D. 20(7), 1717 (1979). https://doi.org/10.1103/PhysRevD.20.1717

    Article  ADS  Google Scholar 

  41. A. C. Villari, W. Mittig, A. Lépine-Szily, R. Lichtenthäler Filho, G. Auger, L. Bianchi, R. Beunard, J. M. Casandjian, J. L. Ciffre, A. Cunsolo, A. Foti, L. Gaudard, C. L. Lima, E. Plagnol, Y. Schutz, R. H. Siemssen, J. P. Wieleczko, Search for color van der Waals force in 208Pb+208Pb Mott scattering. Phys. Rev. Lett. 71(16), 2551 (1993). https://doi.org/10.1103/PhysRevLett.71.2551

    Article  ADS  Google Scholar 

Download references

Funding

Work supported in part by the Brazilian agency FAPESP thematic projects 2017/05660-0 and 2019/07767-1, and INCT-FNA Proc. No. 464898/2014-5 (RH), and the US NSF through a grant for ITAMP at Harvard University and the Smithsonian Astrophysical Observatory (JFB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Higa.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higa, R., Babb, J.F. Few-Neutron Systems with the Long-Range Casimir-Polder Force. Braz J Phys 51, 231–237 (2021). https://doi.org/10.1007/s13538-020-00849-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00849-5

Keywords

Navigation