Skip to main content
Log in

Genome-wide identification and expression analysis of sulphate transporter (SULTR) genes under sulfur deficiency in Brachypodium distachyon

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sulphur is an important mineral element for plant growth and development. It involves in a number of metabolic processes with crucial functions. This study has performed a genome-wide analysis of sulfate transporter (SULTR) genes in Brachypodium distachyon. Ten putative SULTR genes were identified in Brachypodium genome. BdSULTR genes included 6–17 exons encoding a protein of 647–693 residues with basic nature. BdSULTR proteins included both sulfate_transp (PF00916) and STAS (PF01740) domains. BdSULTRs were classified into 4 groups based on the phylogenetic distribution. Promoter regions of all BdSULTR genes, except for BdSULTR3;3 and 3;5 included the SURECOREATSULTR11 elements. A considerable structural overlap was identified between superimposed SULTR1;3 and 3;1 proteins, indicating that SULTR1 members may also involve in plant stress response/tolerance like SULTR3 members. Microarray and RNA-Seq analyses also revealed the differential expression of SULTR 1 and 3 genes under different biotic/abiotic stresses. Protein–protein interaction partners of BdSULTRs were mainly related with adenylyl-sulfate kinases, 5′-adenylylsulfate reductases, ATP sulfurylases, and acyl carrier proteins. Moreover, expression profiles of identified BdSULTR genes under S-deficiency were analyzed using RT-qPCR. It was revealed that BdSULTR1;1 and 3;1 are highly expressed in plant roots as ~tenfold and ~fivefold, respectively, while BdSULTR2 (~15-fold) and 3;1 (~twofold) are abundantly expressed in leaf tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SULTR:

Sulfate transporters

CELLO:

subCELlularLOcalization predictor

GEO:

Gene Expression Omnibus

CRE:

cis-regulatory elements

TMDs:

Transmembrane domains

References

  • Aubry S, Smith-Unna RD, Boursnell CM, Kopriva S, Hibberd JM (2014) Transcript residency on ribosomes reveals a key role for the Arabidopsis thaliana bundle sheath in sulfur and glucosinolate metabolism. Plant J 78:659–673

    Article  CAS  PubMed  Google Scholar 

  • Awazuhara M, Fujiwara T, Hayashi H, Watanabe-Takahashi A, Takahashi H, Saito K (2005) The function of SULTR2;1 sulfate transporter during seed development in Arabidopsis thaliana. Plant Physiol 125:95–105

    Article  CAS  Google Scholar 

  • Bernsel A, Viklund H, Falk J, Lindahl E, Von Heijne G, Elofsson A (2008) Prediction of membrane protein topology from first principles. Proc Natl Acad Sci 105:7177–7181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bevan MW, Garvin DF, Vogel JP (2010) Brachypodium distachyon genomics for sustainable food and fuel production. Curr Opin Biotech 21:211–217

    Article  CAS  PubMed  Google Scholar 

  • Buchner P, Takahashi H, Hawkesford MJ (2004) Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. J Exp Bot 55:1765–1773

    Article  CAS  PubMed  Google Scholar 

  • Cao MJ, Wang Z, Wirtz M, Hell R, Oliver DJ, Xiang CB (2013) SULTR3; 1 is a chloroplast-localized sulfate transporter in Arabidopsis thaliana. Plant J 73:607–616

    Article  CAS  PubMed  Google Scholar 

  • Cao MJ, Wang Z, Zhao Q, Mao JL, Speiser A, Wirtz M et al (2014) Sulfate availability affects ABA levels and germination response to ABA and salt stress in Arabidopsis thaliana. Plant J 77:604–615

    Article  CAS  PubMed  Google Scholar 

  • Caraux G, Pinloche S (2005) Permut matrix: a graphical environment to arrange gene expression profiles in optimallinear order. Bioinformatics 21(7):1280–1281

    Article  CAS  PubMed  Google Scholar 

  • Casieri L, Gallardo K, Wipf D (2012) Transcriptional response of Medicago truncatula sulphate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress. Planta 235:1431–1447

    Article  CAS  PubMed  Google Scholar 

  • Davidian JC, Kopriva S (2010) Regulation of sulfate uptake and assimilation—the same or not the same? Mol Plant 3:314–325

    Article  CAS  PubMed  Google Scholar 

  • Draper J, Mur LAJ, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, Routledge APM (2001) Brachypodium distachyon: a new model system forfunctional genomics in grasses. Plant Physiol 127:1539–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar R, Domrachev M, Lash A (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Kereamy A, El-Sharkawy I, Ramamoorthy R, Taheri A, Errampalli D, Kumar P, Jayasankar S (2011) Prunus domestica pathogenesis-related protein-5 activates the defense response pathway and enhances the resistance to fungal infection. PLoS ONE 6:e17973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, Mering CV, Jensen LJ (2013) STRING v9. 1: protein–protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:808–815

    Article  Google Scholar 

  • Gallardo K, Courty PE, Le Signor C, Wipf D, Vernoud V (2014) Sulfate transporters in the plant’s response to drought and salinity: regulation and possible functions. Front Plant Sci 5:580

    Article  PubMed  PubMed Central  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana, Louisville, pp 571–607

    Chapter  Google Scholar 

  • Gläser K, Kanawati B, Kubo T, Schmitt-Kopplin P, Grill E (2014) Exploring the Arabidopsis sulfur metabolome. Plant J 77:31–45

    Article  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:1178–1186

    Article  Google Scholar 

  • Gu Z, Cavalcanti A, Chen FC, Bouman P, Li WH (2002) Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Mol Biol Evo. 19:256–262

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honsel A, Kojima M, Haas R, Frank W, Sakakibara H, Herschbach C, Rennenberg H (2012) Sulphur limitation and early sulphur deficiency responses in poplar: significance of gene expression, metabolites, and plant hormones. J Exp Bot 63:1873–1893

    Article  CAS  PubMed  Google Scholar 

  • Howarth J, Fourcroy P, Davidian J-C, Smith FW, Hawkesford MJ (2003) Cloning of two contrasting high-affinity sulphate transporters from tomato induced by low sulphate and infectionby the vascular pathogen Verticillium dahliae. Planta 218:58–64

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297

    Article  PubMed  Google Scholar 

  • Hyung D, Lee C, Kim JH, Yoo D, Seo YS, Jeong SC et al (2014) Cross-family translational genomics of abiotic stress-responsive genes between Arabidopsis and Medicago truncatula. PLoS ONE 9:e91721. doi:10.1371/journal.pone.0091721

    Article  PubMed  PubMed Central  Google Scholar 

  • Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H (2004) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16:2693–2704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Prot 10:845–858

    Article  CAS  Google Scholar 

  • Kumar S, Asif MA, Chakrabarty D, Tripathi RD, Trivedi PK (2011) Differential expression and alternative splicing of rice sulphate transporter family members regulate sulphur status during plant growth, development and stress conditions. Funct Integr Genomics 11:259–273

    Article  CAS  PubMed  Google Scholar 

  • Lovell SC, Davis IW, Arendall WB, Bakker PIW, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Cα geometry: φ, ψ, and Cβ deviation. Proteins 50:437–450

    Article  CAS  PubMed  Google Scholar 

  • Martin MN, Tarczynski MC, Shen B, Leustek T (2005) The role of 5′-adenylylsulfate reductase in controlling sulfate reduction in plants. Photosynth Res 86:309–323

    Article  CAS  PubMed  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Yamaya T, Takahashi H (2004) Regulation of high-affinity sulphate transporters in plants: towards systematic analysis of sulphur signalling and regulation. J Exp Bot 55:1843–1849

    Article  CAS  PubMed  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Inoue E, Yamaya T, Takahashi H (2005) Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. Plant J 42:305–314

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammaliantranscriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  CAS  PubMed  Google Scholar 

  • Nguyen MN, Tan KP, Madhusudhan MS (2011) CLICK: topology-independent comparison of biomolecular 3D structures. Nucleic Acids Res 39:W24–W28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozdemir BS, Hernandez P, Filiz E, Budak H (2009) Brachypodium genomics. Int J Plant Genomics. doi:10.1155/2008/536104

    Google Scholar 

  • Parey K, Demmer U, Warkentin E, Wynen A, Ermler U, Dahl C (2013) Structural, biochemical and genetic characterization of dissimilatory ATP Sulfurylase from Allochromatium vinosum. PLoS ONE 8(9):e7470

    Article  Google Scholar 

  • Pasquet JC, Chaouch S, Macadré C, Balzergue S, Huguet S, Martin-Magniette ML, Bellvert F, Deguercy X, Thareau V, Heintz D et al (2014) Differential gene expression and metabolomics analyses of Brachypodium distachyon infected by deoxynivalenol producing and non-producing strains of Fusarium graminearum. BMC Genom 15:629

    Article  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in realtime RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res. doi:10.1093/nar/gkr1065

    PubMed Central  Google Scholar 

  • Rae AL, Smith FW (2002) Localization of expression of a high affinity sulfate transporter in barley roots. Planta 215:565–568

    Article  CAS  PubMed  Google Scholar 

  • Rouached H, Berthomieu P, El Kassis E, Cathala N, Catherinot V, Labesse G, Davidian JC, Fourcroy P (2005) Structural and functional analysis ofthe C-terminal STAS (sulfate transporter and anti-sigma antagonist) domain of the Arabidopsis thaliana sulfate transporter SULTR1.2. J Biol Chem 280:15976–15983

    Article  CAS  PubMed  Google Scholar 

  • Rouached H, Wirtz M, Alary R, Hell R, Arpat AB, Davidian JC et al (2008) Differential regulation of the expression of two high-affinity sulfate transporters, SULTR1.1 and SULTR1.2, in Arabidopsis. Plant Physiol 147:897–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz CJ, Doyle MR, Manzaneda AJ, Rey PJ, Mitchell-Olds T, Amasino RM (2010) Natural variation of flowering time and vernalization responsiveness in Brachypodium distachyon. Bioenerg Res 3:38–46

    Article  Google Scholar 

  • Shibagaki N, Grossman AR (2006) The role of the STAS domain inthe function and biogenesis of a sulfate transporter as probed byrandom mutagenesis. J Biol Chem 281:22964–22973

    Article  CAS  PubMed  Google Scholar 

  • Shibagaki N, Rose A, McDermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP (2002) Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transportof sulfate into roots. Plant J 29:475–486

    Article  CAS  PubMed  Google Scholar 

  • Smith FW, Ealing PM, Hawkesford MJ, Clarkson T (1995) Plantmembers of a family of sulfate transporters reveal functional sub types. Proc Natl Acad Sci 92:9373–9377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integrationand network visualization. Bioinformatics 27:431–432

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H (2010) Regulation of sulfate transport and assimilation inplants. Int Rev Cell Mol Biol 281:129–159

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, de Almeida-Engler J, Engler G, van Montagu M, Saito K (1997) Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulphate starved roots plays a central role inArabidopsis thaliana. Proc Natl Acad Sci 94:11102–11107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K (2000) The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23:171–182

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Buchner P, Yoshimoto N, Hawkesford MJ, Shiu SH (2012) Evolutionary relationships and functional diversity of plant sulfate transporters. Front Plant Sci 2:119

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Timothy L, Mikael Bodén B, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:202–208

    Article  Google Scholar 

  • Tjellström H, Strawsine M, Silva J, Cahoon EB, Ohlrogge JB (2013) Disruption of plastid acyl: acyl carrier protein synthetases increases medium chain fatty acid accumulation in seeds of transgenic Arabidopsis. FEBS Lett 587:936–942

    Article  PubMed  Google Scholar 

  • Tombuloglu H, Ablazov A, Filiz E (2016) Genome-wide analysis of response to low sulfur (LSU) genes in grass species and expression profiling of model grass species Brachypodium distachyon under S deficiency. Turkish J Biol. doi:10.3906/biy-1508-32

    Google Scholar 

  • Verelst W, Bertolini E, De Bodt S, Vandepoele K, Demeulenaere M, Pè ME, Inzé D (2013) Molecular and physiological analysis of growth-limiting drought stress in Brachypodium distachyon leaves. Mol Plant 6:311–322

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K (2002) Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate inArabidopsis root. Plant J 29:465–473

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto N, Inoue E, Saito K, Yamaya T, Takahashi H (2003) Phloem-localizing sulfate transporter, Sultr1; 3, mediates re-distribution of sulfur from source to sink organs in Arabidopsis. Plant Physiol 131:1511–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimoto N, Inoue E, Watanabe-Takahashi A, Saito K, Takahashi H (2007) Posttranscriptional regulation of high-affinity sulfate transporters in Arabidopsis by sulfur nutrition. Plant Physiol 145:378–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64:643–651

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Grewer C (2007) The sodium-coupled neutral amino acid transporter SNAT2 mediates an anion leak conductance that is differentially inhibited by transported substrates. Biophysical J 92:2621–2632

    Article  CAS  Google Scholar 

  • Zuber H, Davidian JC, Aubert G, Aime D, Belghazi M, Lugan R, Heintz D, Wirtz M, Hell R, Thompson R, Gallardo K (2010a) The seed composition of Arabidopsis mutants for the group 3 sulfate transporters indicates a role in sulfate translocation within developing seeds. Plant Physiol 154:913–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuber H, Davidian JC, Wirtz M, Hell R, Belghazi M, Thompson R, Gallardo K (2010b) Sultr4;1 mutant seeds of Arabidopsis have an enhanced sulphate content and modified proteome suggesting metabolic adaptations to altered sulphate compartmentalization. BMC Plant Biol 10:78

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ertugrul Filiz.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1725 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tombuloglu, H., Filiz, E., Aydın, M. et al. Genome-wide identification and expression analysis of sulphate transporter (SULTR) genes under sulfur deficiency in Brachypodium distachyon . J. Plant Biochem. Biotechnol. 26, 263–273 (2017). https://doi.org/10.1007/s13562-016-0388-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-016-0388-0

Keywords

Navigation