Skip to main content

Advertisement

Log in

Lactobacillus paracasei strain 06TCa19 suppresses inflammatory chemokine induced by Helicobacter pylori in human gastric epithelial cells

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Helicobacter (H.) pylori infection is an important risk factor for gastric cancer that causes gastric inflammation. Inflammatory chemokines such as interleukin (IL)-8 and regulated on activation normal T cell expressed and secreted (RANTES) are elevated in the gastric mucosa by H. pylori. This study aimed to investigate the effects of Lactobacillus paracasei strain 06TCa19, a probiotic strain, on IL-8 and RANTES expression and production induced by H. pylori using human gastric epithelial cell lines. Strain 06TCa19 was shown to suppress H. pylori-mediated elevation of gene expression related to these chemokines in MKN45 cells. The strain also suppressed the increase in IL-8 and RANTES products induced by H. pylori in AGS cells as well as in MKN45 cells. In MKN45 cells inoculated with H. pylori, strain 06TCa19 was shown to downregulate the activation of NF-κB and p38 MAPK signaling pathways. Additionally, the level of the CagA virulence protein of H. pylori in the MKN45 cells and the number of viable H. pylori adhering to MKN45 cells decreased with the addition of strain 06TCa19. Moreover, the strain 06TCa19 notably increased lactic acid in the supernatant of MKN45 cells. Thus, lactic acid released from strain 06TCa19 might have inhibited the adhesion of H. pylori to MKN45 cells and prevented the insertion of H. pylori CagA into the cells, and elevation of IL-8 and RANTES genes and proteins might be suppressed by downregulating the NF-κB and p38 MAPK pathways. Therefore, use of strain 06TCa19 may prevent H. pylori-associated gastric inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. de Vries AC, van Driel HF, Richardus JH, et al. Migrant communities constitute a possible target population for primary prevention of Helicobacter pylori-related complications in low incidence countries. Scand J Gastroenterol. 2008;43:403–9.

    Article  PubMed  Google Scholar 

  2. Yu HJ, Liu W, Chang Z, et al. Probiotic BIFICO cocktail ameliorates Helicobacter pylori induced gastritis. World J Gastroenterol. 2015;21:6561–71.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sipponen P, Hyvarinen H. Role of Helicobacter pylori in the pathogenesis of gastritis, peptic ulcer and gastric cancer. Scand J Gastroenterol Suppl. 1993;28:3–6.

    Article  Google Scholar 

  4. Graham DY. Pathogenic mechanisms leading to Helicobacter pylori-induced inflammation. Euro J Gastroenterol Hepatol. 1992;4:S9–16.

    Google Scholar 

  5. Huang J, O’Toole PW, Doig P, et al. Stimulation of interleukin-8 production in epithelial cell lines by Helicobacter pylori. Infect Immun. 1995;63:1732–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kudo T, Lu H, Wu JY, et al. Regulation of RANTES promoter activation in gastric epithelial cells infected with Helicobacter pylori. Infect Immun. 2005;73:7602–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mori N, Krensky AM, Geleziunas R, et al. Helicobacter pylori induces RANTES through activation of NF-kappa B. Infect Immun. 2003;71:3748–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cha B, Lim JW, Kim KH, et al. 15-deoxy-D12,14-prostaglandin J2 suppresses RANTES expression by inhibiting NADPH oxidase activation in Helicobacter pylori-infected gastric epithelial cells. J Physiol Pharmacol. 2011;62:167–74.

    CAS  PubMed  Google Scholar 

  9. Malfertheiner P, Mégraud F, O’Morain C, et al. Current concepts in the management of Helicobacter pylori infection—the Maastricht 2-2000 Consensus Report. Aliment Pharmacol Ther. 2002;16:167–80.

    Article  CAS  PubMed  Google Scholar 

  10. Patel A, Shah N, Prajapati JB. Clinical application of probiotics in the treatment of Helicobacter pylori infection-a brief review. J Microbiol Immunol Infect. 2014;47:429–37.

    Article  PubMed  Google Scholar 

  11. Gerrits MM, van Vliet AH, Kuipers EJ, et al. Helicobacter pylori and antimicrobial resistance: molecular mechanisms and clinical implications. Lancet Infect Dis. 2006;6:699–709.

    Article  CAS  PubMed  Google Scholar 

  12. Cheng A, Sheng WH, Liou JM, et al. Comparative in vitro antimicrobial susceptibility and synergistic activity of antimicrobial combinations against Helicobacter pylori isolates in Taiwan. J Microbiol Immunol Infect. 2015;48:72–9.

    Article  CAS  PubMed  Google Scholar 

  13. Johnson-Henry KC, Nadjafi M, Avitzur Y, et al. Amelioration of the effects of Citrobacter rodentium infection in mice by pretreatment with probiotics. J Infect Dis. 2005;191:2106–17.

    Article  PubMed  Google Scholar 

  14. Tsai CC, Hsih HY, Chiu HH, et al. Antagonistic activity against Salmonella infection in vitro and in vivo for two Lactobacillus strains from swine and poultry. Int J Food Microbiol. 2005;102:185–94.

    Article  PubMed  Google Scholar 

  15. Tien MT, Girardin SE, Regnault B, et al. Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells. J Immunol. 2006;176:1228–37.

    Article  CAS  PubMed  Google Scholar 

  16. Lesbros-Pantoflickova D, Corthésy-Theulaz I, Blum AL. Helicobacter pylori and probiotics. J Nutr. 2007;137:812S–8S.

    CAS  PubMed  Google Scholar 

  17. Tamura A, Kumai H, Nakamichi N, et al. Suppression of Helicobacter pylori-induced interleukin-8 production in vitro and within the gastric mucosa by a live Lactobacillus strain. J Gastroenterol Hepatol. 2006;21:1399–406.

    CAS  PubMed  Google Scholar 

  18. Zhou C, Ma FZ, Deng XJ, et al. Lactobacilli inhibit interleukin-8 production induced by Helicobacter pylori lipopolysaccharide-activated Toll-like receptor 4. World J Gastroenterol. 2008;14:5090–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang YJ, Chuang CC, Yang HB, et al. Lactobacillus acidophilus ameliorates H. pylori-induced gastric inflammation by inactivating the Smad7 and NFκB pathways. BMC Microbiol. 2012;19:38.

    Article  CAS  Google Scholar 

  20. Thiraworawong T, Spinler JK, Werawatganon D, et al. Anti-inflammatory properties of gastric-derived Lactobacillus plantarum XB7 in the context of Helicobacter pylori infection. Helicobacter. 2014;19:144–55.

    Article  CAS  PubMed  Google Scholar 

  21. Takeda S, Yamasaki K, Takeshita M, et al. The investigation of probiotic potential of lactic acid bacteria isolated from traditional Mongolian dairy products. Anim Sci J. 2011;82:571–9.

    Article  CAS  PubMed  Google Scholar 

  22. Takeda S, Fujimoto R, Takenoyama S, et al. Application of probiotics from Mongolian dairy products to fermented dairy products and its effects on human defecation. Food Sci Technol Res. 2013;19:245–53.

    Article  CAS  Google Scholar 

  23. Takeda S, Takeshita M, Matsusaki T, et al. In vitro and in vivo anti-Helicobacter pylori activity of probiotics isolated from Mongolian dairy products. Food Sci Technol Res. 2015;21:399–406.

    Article  Google Scholar 

  24. Kabir AM, Aiba Y, Takagi A, et al. Prevention of Helicobacter pylori infection by lactobacilli in a gnotobiotic murine model. Gut. 1997;41:49–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lv D, Zhang Y, Kim HJ, et al. CCL5 as a potential immunotherapeutic target in triple-negative breast cancer. Cell Mol Immunol. 2013;10:303–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tanabe T, Shimokawaji T, Kanoh S, et al. IL-33 stimulates CXCL8/IL-8 secretion in goblet cells but not normally differentiated airway cells. Clin Exp Allergy. 2014;44:540–52.

    Article  Google Scholar 

  27. Yin CY, Lin XL, Tian L, et al. Lobaplatin inhibits growth of gastric cancer cells by inducing apoptosis. World J Gastroenterol. 2014;14:17426–33.

    Article  Google Scholar 

  28. Kikuchi T, Kato K, Ohara S, et al. The relationship between persistent secretion of RANTES and residual infiltration of eosinophils and memory T lymphocytes after Helicobacter pylori eradication. J Pathol. 2000;192:243–50.

    Article  CAS  PubMed  Google Scholar 

  29. Shirasawa Y, Shibahara-Sone H, Iino T, et al. Bifidobacterium bifidum BF-1 suppresses Helicobacter pylori-induced genes in human epithelial cells. J Dairy Sci. 2010;93:4526–34.

    Article  CAS  PubMed  Google Scholar 

  30. Kim JE, Kim MS, Yoon YS, et al. Use of selected lactic acid bacteria in the eradication of Helicobacter pylori infection. J Microbiol. 2014;52:955–62.

    Article  CAS  PubMed  Google Scholar 

  31. Yamaoka Y, Kita M, Kodama T, et al. Chemokines in the gastric mucosa in Helicobacter pylori infection. Gut. 1998;42:609–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Seo JH, Lim JW, Kim H. Differential role of ERK and p38 on NF-κB activation in Helicobacter pylori-infected gastric epithelial cells. J Cancer Prev. 2013;18:346–50.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yamaoka Y, Kwon DH, Graham DY. A M(r) 34,000 proinflammatory outer membrane protein (oipA) of Helicobacter pylori. Proc Natl Acad Sci USA. 2000;97:7533–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Backert S, Meyer TF. Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol. 2006;9:207–17.

    Article  CAS  PubMed  Google Scholar 

  35. Suzuki M, Mimuro H, Kiga K, et al. Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe. 2009;22:23–34.

    Article  Google Scholar 

  36. Li L, Zhou X, Xiao S, et al. The effect of Helicobacter pylori eradication on the gastrointestinal microbiota in patients with duodenal ulcer. J Gastrointestin Liver Dis. 2016;25:139–46.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr. Tatsuya Matsusaki (Minami Nihon Rakuno Kyodo Co. Ltd.) for his technical assistance in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Takeshita.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeda, S., Igoshi, K., Tsend-Ayush, C. et al. Lactobacillus paracasei strain 06TCa19 suppresses inflammatory chemokine induced by Helicobacter pylori in human gastric epithelial cells. Human Cell 30, 258–266 (2017). https://doi.org/10.1007/s13577-017-0172-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-017-0172-z

Keywords

Navigation