Skip to main content
Log in

Pesticide-induced oxidative stress in laboratory and field populations of native honey bees along intensive agricultural landscapes in two Eastern Indian states

  • Original article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

Pesticides have been cited as one of the major drivers of pollinator loss. However, little is known about pesticide impacts on natural populations of native honey bee species. This study looked into the effect of pesticides with respect to oxidative stress in the laboratory and in field populations of two native Indian honey bee species (Apis dorsata and A. cerana) by examining a combination of biomarkers, e.g., superoxide dismutase, catalase and xanthine oxidase. A significant upregulation of all three biomarkers was observed in both treated individuals in laboratory experiments and field populations sampled from a pesticide use gradient. This study reports, for the first time, an increase in expression of xanthine oxidase in an invertebrate system (honey bees) exposed to pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

REFERENCES

  • Abrol, D.P. (2011) Foraging. In: Hepburn, H.R., Radloff, S.E. (eds.) Honeybees of Asia, pp. 257–292. Springer, New York

    Chapter  Google Scholar 

  • Aebi, H. (1984) Catalase, in : Packer, L. (Ed.), Methods in Enzymology. Academic Press, Orlando, pp. 121–126. Agricultural census, Government of India (http://agcensus.nic.in/).

  • Ahmad, S., Duval, D.L., Weinhold, L.C., Pardini, R.S. (1991) Cabbage looper antioxidant enzymes: tissue specificity. Insect Biochem. 21(5), 563–572

    Article  CAS  Google Scholar 

  • Akhgari, M., Abdollahi, M., Kebryaeezadeh, A., Hosseini, R., Sabzevari, O. (2003) Biochemical evidence for free radicalinduced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats. Hum. Exp. Toxicol. 22, 205–211

    Article  CAS  PubMed  Google Scholar 

  • Anderson, A.D., Patton, R.L. (1955) In vitro studies of uric acid synthesis in insects. J. Exp. Zool. 128(3), 443–451

    Article  Google Scholar 

  • Aranda, R., Doménech, E., Rus, A.D., Real, J.T., Sastre, J., Viña, J., Pallardó, F.V. (2007) Age-related increase in xanthine oxidase activity in human plasma and rat tissues. Free Radic. Res. 41(11), 1195–1200

    Article  CAS  PubMed  Google Scholar 

  • Barbeta, C., Lino-Neto, T., Piques, M.C., Sousa, M.F., Tavares, R.M., Pais, M.S. (2004) Identification of Zantedeschia aethiopica Cat1 and Cat2 catalase genes and their expression analysis during spathe senescence and regreening. Plant Sci. 167, 889–898

    Article  Google Scholar 

  • Archer, C.R., Pirk, C.W.W., Wright, G.A., Nicolson, S.W. (2014) Nutrition affects survival in African honeybees exposed to interacting stressors. Funct. Ecol. . doi:10.1111/1365-2435.12226

    Google Scholar 

  • Bouayed, J., Bohn, T. (2010) Exogenous antioxidants—double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidative. Med. Cell Longev. 3, 228–237

    Article  Google Scholar 

  • Badiou-Bénéteau, A., Carvalho, S.M., Brunet, J.-L., Carvalho, G.A., Buleté, A., Giroud, B., Belzunces, L.P. (2012) Development of biomarkers of exposure to xenobiotics in the honey bee Apis mellifera: application to the systemic insecticide thiamethoxam. Ecotoxicol. Environ. Saf. 82, 22–31

    Article  PubMed  Google Scholar 

  • Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254

    Article  CAS  PubMed  Google Scholar 

  • Brittain, C.A., Vighi, M., Bommarco, R., Settele, J., Potts, S.G. (2010) Impacts of a pesticide on pollinator species richness at different spatial scales. Basic Appl. Ecol. 11, 106–115

    Article  CAS  Google Scholar 

  • Choudhary, A., Sharma, D.C., Badiyala, A. (2009) Relative safety of some pesticides against honey bees, Apis cerana cerana Fab. and Apis mellifera L. on mustard (Brassica Juncea L. Czern). Pestic. Res. J. 21(1), 67–70

    CAS  Google Scholar 

  • Claudianos, C., Ranson, H., Johnson, R.M., Biswas, S., Schuler, M.A., Berenbaum, M.R., Eyereisen, R., Oakeshott, J.G. (2006) A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol. Biol. 15(5), 615–636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Conners, D.E. (2004) Biomarkers of oxidative stress in freshwater clams (Corbicula fluminea), as mechanistic tools to evaluate the impairment of stream ecosystem health by lawn care pesticides. Ph. D. Thesis, Graduate Faculty, University of Georgia, Georgia.

  • Cresswell, J.E., Laycock, I. (2012) Towards the comparative ecotoxicology of bees: the response-response relationship. Julius-Kuhn-Archiv 437

  • Czarniewska, E., Kasprzyk, A., Ziemnicki, K. (2003) Effect of paraquat and metoxychlor on antioxidant enzymes in frog Rana esculenta L liver. Biol. Lett. 40(2), 125–133

    CAS  Google Scholar 

  • Decourtye, A., Armengaud, C., Renou, M., Devillers, J., Cluzeau, S. (2005) Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch. Environ. Contam. Toxicol. 48, 242–250

    Article  CAS  PubMed  Google Scholar 

  • Decourtye, A., Armengaud, C., Renou, M., Devillers, J., Cluzeau, S. (2004) Imidacloprid impairs memory and brain metabolism in the honeybee (Apismellifera L.). Pestic. Biochem. Phys. 78, 83–92

    Article  CAS  Google Scholar 

  • Desneux, N., Decourtye, A., Delpuech, J.M. (2007) The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81–106

    Article  CAS  PubMed  Google Scholar 

  • Devillers, J., Pham-Delegue, M.H., Decourtye, A., Budzinski, H., Cluzeau, S., Maurin, G. (2002) Structure-toxicity modeling of pesticides to honey bees. Environ. Res. 13(7–8), 641–648

    CAS  Google Scholar 

  • Dhaliwai, H.S., Sharma, P.L. (1974) Foraging range of the Indian honeybee. J. Apic. Res. 13, 137–141

    Google Scholar 

  • Dyer, F.C., Seeley, T.D. (1991) Dance dialects and foraging range in three Asian honey bee species. Behav. Ecol. Sociobiol. 28, 227–233

    Article  Google Scholar 

  • Felton, G.W., Summers, C.B. (1995) Antioxidant systems in insects. Arch. Insect Bioch. Physiol. 29(2), 187–197

    Article  CAS  Google Scholar 

  • Fridovich, I. (1982) Superoxide dismutase in biology and medicine. In: Autor, A.P. (ed.) Pathology of Oxygen, pp. 1–19. Academic, New York

    Google Scholar 

  • Fujiyuki, T., Matsuzaka, E., Nakaoka, T., Takeuchi, H., Wakamoto, A., Ohka, S., Sekimizu, K., Nomoto, A., Kubo, T. (2009) Distribution of Kakugo virus and its effects on the gene expression profile in the brain of the worker honeybee Apis mellifera L. J. Virol. 83(22), 11560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • George, P.J.E., Ambrose, D.P. (2004) Toxic effects of insecticides in the histomorphology of alimentary canal, testis and ovary in a reduviid Rhynocoris kumarii Ambrose and Livingstone (Hemiptera: Reduviidae). J. Adv. Zool. 25, 46–50

    Google Scholar 

  • Gilbert, M.D., Wilkinson, C.F. (1974) Microsomal oxidases in honey bee, Apis mellifera (L.). Pestic. Biochem. Physiol. 4(1), 56–66

    Article  CAS  Google Scholar 

  • Halliwell, B. (2007) Biochemistry of oxidative stress. Biochem. Soc. Trans. 35(Pt 5), 1147–1150

    CAS  PubMed  Google Scholar 

  • Han, P., Niu, C.-Y., Lei, C.-L., Cui, J.-J., Desneux, N. (2010) Use of an innovative T-tube maze assay and the proboscis extension response assay to assess sublethal effects of GM products and pesticides on learning capacity of the honey bee Apis mellifera L. Ecotoxicology 19(8), 1612–1619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hardstone, M.C., Scott, J.G. (2010) Is Apis mellifera more sensitive to insecticides than other insects. Pest Manag. Sci. 66(11), 1171–1180

    Article  CAS  PubMed  Google Scholar 

  • Harrison, R. (2002) Structure and function of xanthine oxidoreductase: where are we now? Free Radic. Biol. Med. 33(6), 774–797

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, Y. (1961) Properties of xanthine dehydrogenase in the silkworm, Bombyx mori L. Nature 192, 756–757

    Article  CAS  PubMed  Google Scholar 

  • Henry, N., Béguin, M., Requier, F., Rollin, O., Odoux, J.-F., Aupinel, P., Aptel, J., Tchamitchian, S., Decourtye, A. (2012) A common pesticide decreases foraging success and survival in honey bees. Science 336(6079), 348–350

    Article  CAS  PubMed  Google Scholar 

  • Hille, R., Nishino, T. (1995) Flavoprotein structure and mechanism. 4. Xanthine oxidase and xanthine dehydrogenase. FASEB J. 9(11), 995–1003

    CAS  PubMed  Google Scholar 

  • Idris, A.B., Grafius, E. (1993) Pesticides affect immature stages of Diadegma insulare (Hymenoptera, Ichneumonidae) and its host, the diamondback moth (Lepidoptera, Plutellidae). J. Econ. Entomol. 86, 1203–1212

    CAS  Google Scholar 

  • Irzykiewicz, H. (1955) Xanthine oxidase of the clothes moth, Tineola bisselliella, and some other insects. Aust. J. Biol. Sci. 8, 369–377

    CAS  Google Scholar 

  • Joanisse, D.R., Storey, K.B. (1996) Oxidative stress and antioxidants in overwintering larvae of cold-hardy goldenrod gall insects. J. Exp. Biol. 199(Pt 7), 1483–1491

    CAS  PubMed  Google Scholar 

  • Johnson, R.M., Ellis, M.D., Mullin, C., Frazier, M. (2010) Pesticides and honey bee toxicity – USA. Apidologie 41(3), 312–331

    Article  CAS  Google Scholar 

  • Khessiba, A., Roméo, M., Aïssa, P. (2005) Effects of some environmental parameters on catalase activity measured in the mussel (Mytilus galloprovincialis) exposed to lindane. Environ. Pollut. 133(2), 275–281

    Article  CAS  PubMed  Google Scholar 

  • Klein, J.P., Moeschberger, M.L. (2003) Survival Analysis. Techniques for Censored and Truncated Data, 2nd edn. Springer Publishers, New York

    Google Scholar 

  • Koeniger, N., Vorwohl, G. (1979) Competition for food among four sympatric species of Apini in Sri Lanka (A. dorsata, A. cerana, A. florea and Trigona iridipennis). J. Apic. Res. 18, 95–109

    Google Scholar 

  • Koetz, A.H. (2013) Ecology, behaviour and control of Apis cerana with a focus on relevance to the Australian incursion. Insects 4, 558–592

    Article  Google Scholar 

  • Krupke, C.H., Hunt, G.J., Eitzer, B.D., Andino, G., Given, K. (2012) Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS One 7(1), e29268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Landa, V., Sula, J., Marec, F., Matha, V., Soldan, T. (1991) Methods for Assessing Exposure of insects. In: Tardiffand, R.G., Goldstei, B. (eds.) Human and Non-Human Biota, pp. 249–266. John Wiley and Sons Ltd., New York

    Google Scholar 

  • Mamidala, P., Jones, S.C., Mittapalli, O. (2011) Metabolic resistance in bed bugs. Insects 2(1), 36–48

    Article  Google Scholar 

  • Marklund, S., Marklund, G. (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47(3), 469–474

    Article  CAS  PubMed  Google Scholar 

  • McCord, J.M., Fridovich, I. (1969) Superoxide dismutase: an enzymic function for erythrocuprein (heinocuprein). J. Biol. Chem. 244(22), 6049–6055

    CAS  PubMed  Google Scholar 

  • Medina, P., Budia, F., Del Estal, P., Vinuela, E. (2004) Influence of azadirachtin, a botanical insecticide, on Chrysoperla carnea (Stephens) reproduction: toxicity and ultrastructural approach. J. Econ. Entomol. 97, 43–50

    Article  CAS  PubMed  Google Scholar 

  • Meneshian, A., Bulkley, G.B. (2002) The physiology of endothelial xanthine oxidase: from urate catabolism to reperfusion injury to inflammatory signal transduction. Microcirculation 9(3), 161–175

    Article  CAS  PubMed  Google Scholar 

  • Mueller, S., Riedel, H.-D., Stremmel, W. (1997) Direct evidence for catalase as the predominant H2O2-removing enzyme in human erythrocytes. Blood 90(12), 4973–4978

    CAS  PubMed  Google Scholar 

  • Mullin, C.A., Frazier, M., Frazier, J.L., Ashcraft, S., Simonds, R., vanEngelsdorp, D., Pettis, J.S. (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 5(3), e9754

    Article  PubMed Central  PubMed  Google Scholar 

  • Nishida, Y. (2011) The chemical process of oxidative stress by copper (II) and iron (III) ions in several neurodegenerative disorders. Monatsh. Chem. 142, 375–384

    Article  CAS  Google Scholar 

  • Nishino, T., Okamoto, K., Kawaguchi, Y., Hori, H., Matsumura, T., Eger, B.T., Pai, E.F., Nishino, T. (2005) Mechanism of the conversion of xanthine dehydrogenase to xanthine oxidase: identification of the two cysteine disulfide bonds and crystal structure of a non-convertible rat liver xanthine dehydrogenase mutant. J. Biol. Chem. 280(26), 24888–24894

    Article  CAS  PubMed  Google Scholar 

  • Osborne, J.L. (2012) Bumble bees and pesticides. Nature 491(7422), 43–45

    Article  CAS  PubMed  Google Scholar 

  • Palmer, M.J., Moffat, C., Saranzewa, N., Harvey, J., Wright, G.A., Connolly, C.N. (2013) Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nat. Commun. 4, 1634

    Article  PubMed Central  PubMed  Google Scholar 

  • Partap, U. (2011) The Pollination Role of Honeybees. In: Hepburn, H.R., Radloff, S.E. (eds.) Honeybees of Asia, pp. 227–255. Springer-Verlag Berlin, Heidelberg

    Chapter  Google Scholar 

  • Qiao, D., Seidler, F.J., Slotkin, T.A. (2005) Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos. Toxicol. Appl. Pharm. 206(1), 17–26

    Article  CAS  Google Scholar 

  • Ranjbar, A., Solhi, H., Mashayekhi, F.J., Susanabdi, A., Rezaie, A., Abdollahi, M. (2005) Oxidative stress in acute human poisoning with organophosphorus insecticides; a case control study. Environ. Toxicol. Pharmacol. 20(1), 88–91

    Article  CAS  PubMed  Google Scholar 

  • Schreinemachers, P., Tipraqsa, P. (2012) Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 37(6), 616–626

    Article  Google Scholar 

  • Schriever, C.A., Callaghan, A., Biggs, J.P., Liess, M. (2008) Freshwater Biological Indicator of Pesticide Contamination. Environment Agency, Rio House

    Google Scholar 

  • Smirle, M.J., Winston, M.L. (1988) Detoxifying enzyme activity in worker honeybees: an adaptation for foraging in contaminated ecosystems. Can. J. Zool. 66(9), 1938–1942

    Article  CAS  Google Scholar 

  • Smirle, M.J. (1988) Insecticide resistance mechanism in the honey bee, Apis mellifera L. Ph.D. Thesis, Graduate Faculty, Simon Fraser University, Vancouver.

  • Stanley, J., Chandrasekaran, S., Preetha, G., Kuttalam, S. (2010) Toxicity of diafenthiuron to honey bees in laboratory, semi-field and field conditions. Pest Manag. Sci. 66(5), 505–510

    Article  CAS  PubMed  Google Scholar 

  • Starr, C.K., Schmidt, P.J., Schmidt, J.O. (1987) Nest-site preference of the giant honey bee, Apis dorsata (Hymenoptera : Apidae), in Borneo. Pan-Pac. Entomol. 63(1), 37–42

    Google Scholar 

  • Stefanidou, M., Athanaselis, S., Koutselinis, A. (2003) The toxicology of honey bee poisoning. Vet. Hum. Toxicol. 45(5), 261–265

    CAS  PubMed  Google Scholar 

  • Visser, A., Blacquière, T. (2010) Survival rate of honeybee (Apis mellifera) workers after exposure to sublethal concentrations of imidacloprid. Proc Neth. Entomol. Soc. Meet. 21

  • Velki, M., Kodrík, D., Večeřa, J., Hackenberger, B.K., Socha, R. (2011) Oxidative stress elicited by insecticides: a role for the adipokinetic hormone. Gen. Comp. Endocrinol. 172(1), 77–84

    Article  CAS  PubMed  Google Scholar 

  • Villa, S., Vighi, M., Finizio, A., Serini, G.B. (2000) Risk assessment for honeybees from pesticide-exposed pollen. Ecotoxicology 9, 287–297

    Article  CAS  Google Scholar 

  • Vorbach, C., Harrison, R., Capecchi, M.R. (2003) Xanthine oxidoreductase is central to the evolution and function of the innate immune system. Trends Immunol. 24(9), 512–517

    Article  CAS  PubMed  Google Scholar 

  • Wajner, M., Harkness, R.A. (1989) Distribution of xanthine dehydrogenase and oxidase activities in human and rabbit tissues. Biochim. Biophys. Acta 991(1), 79–84

    Article  CAS  PubMed  Google Scholar 

  • Welinder, C., Ekblad, L. (2011) Coomassie staining as loading control in western blot analysis. J. Proteome Res. 10(3), 1416–1419

    Article  CAS  PubMed  Google Scholar 

  • Whitehorn, P.R., O’Connor, S., Wackers, F.L., Goulson, D. (2012) Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336(6079), 351–352

    Article  CAS  PubMed  Google Scholar 

  • Winfree, R., Aguilar, R., Vázquez, D.P., LeBuhn, G., Aizen, M.A. (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90(8), 2068–2076

    Article  PubMed  Google Scholar 

  • Yu, S.J., Robinson, F.A., Nation, J.L. (1984) Detoxification capacity in the honey bee, Apis mellifera L. Pestic. Biochem. Physiol. 22, 360–368

    Article  CAS  Google Scholar 

  • Zhang, J.-W., Lv, G.-C., Zhao, Y. (2010) The significance of the measurement of serum xanthine oxidase and oxidation markers in patients with acute organophosphorus pesticide poisoning. J. Int. Med. Res. 38(2), 458–465

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported by an INSPIRE fellowship from the Department of Science & Technology, Govt. of India to Priyadarshini Chakrabarti; the Department for Environment, Food and Rural Affairs (DEFRA) Darwin Initiative grant (1662) to Parthiba Basu and Barbara Smith, and a research grant to Sagartirtha Sarkar from the Department of Science & Technology, Govt. of India. Soumik Chatterjee, Debaditya Kumar, Ritam Bhattacharya and Arnob Chatterjee helped in obtaining bee samples. Dr. Kaberi Samanta helped with the GIS maps. The Department of Agriculture, Governments of Odisha and West Bengal helped by providing the cropping intensity data. SGS India Private Limited analysed pesticide residues in soil and honey bee bodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parthiba Basu.

Additional information

Manuscript editor: Monique Gauthier

Stress oxydatif provoqué par des pesticides sur des populations indigènes d’abeilles, élevées en laboratoire et en champ, dans des zones d’agriculture intensive de deux Etats de l’est de l’Inde

Apis cerana / Apis dorsata / enzyme / dismutase / catalase / oxydase / insecticide

Durch Pestizide verursachter oxydativer Stress bei Labor. und Feldpopulationen einheimischer Honigbeienen entlang zweier intensiver Agrarlandschaften in zwei ostindischen Staaten

Apis cerana / Apis dorsata / Enzyme / Superoxid-Dismutase / Xanthin-Oxidase / Katalase / Insektizid

Electronic supplementary material

APPENDIX

APPENDIX

List of abbreviations used in methodology section:

Abbreviation

Full terminology

Abbreviation

Full terminology

HIC

High intensity cropping

XOX

Xanthine oxidase

LIC

Low intensity cropping

PBS

Phosphate buffered saline

LCMS/MS

Liquid chromatography–mass spectrometry / mass spectrometry

NaCl

Sodium chloride

GC

Gas chromatography

NP40

Tergitol-type NP-40 (nonylphenoxypolyethoxylethanol)

EPA3540C and EPA8081A procedures

Environmental Protection Agency methods 3540C and 8081A; followed by SGS India Pvt. Ltd.

EDTA

Ethylenediaminetetraacetic acid

OP

Organophosphorus pesticide

SDS-PAGE

Sodium dodecyl sulfate—Polyacrylamide gel electrophoresis

EC

Effective Concentration

PVDF

Polyvinylidenedifluoride

SP

Synthetic pyrethroid

HRP

Horseradish peroxidase

ES

Endosulfan pesticide

DTPA

Diethylene triamine pentaacetic acid

Experimental treatments

D0 (control)

D1 (5 % OP + 1.5 % SP + 5.5 % ES)

D2 (12.5 % OP + 4 % SP + 15 % ES)

D3 (20 % OP + 6.5 % SP + 23.5 % ES)

D4 (25 % OP + 8 % SP + 29 % ES)

D5 (30 % OP + 10 % SP + 35 % ES)

Tris–HCl

Tris (2-Amino-2-hydroxymethyl-propane-1,3-diol)—Hydrochloric acid

SOD

Superoxide dismutase

CAT

Catalase

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrabarti, P., Rana, S., Sarkar, S. et al. Pesticide-induced oxidative stress in laboratory and field populations of native honey bees along intensive agricultural landscapes in two Eastern Indian states. Apidologie 46, 107–129 (2015). https://doi.org/10.1007/s13592-014-0308-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13592-014-0308-z

Keywords

Navigation