Skip to main content

Advertisement

Log in

Neuroprotective effect of chia seed oil nanoemulsion against rotenone induced motor impairment and oxidative stress in mice model of Parkinson’s disease

  • Research Article
  • Published:
Advances in Traditional Medicine Aims and scope Submit manuscript

Abstract

Chia seed oil (CSO) was reported to possess various pharmacological effects, however, its usefulness is restricted due to its inadequate solubility, bioavailability and stability. In the present work, efforts were put forward to develop chia seed oil nanoemulsion (CSO NE). The developed CSO NE was exposed to pharmacodynamic evaluation against Parkinson’s disease (PD) induced by rotenone (RT) in the mice. Here, the animals were classified into 6 groups: (I) Vehicle control, (II) RT (1 mg/kg s.c.), (III) CSO (200 mg/kg p.o.) + RT, (IV) CSO (400 mg/kg p.o.) + RT, (V) CSO NE (200 mg/kg p.o.) + RT, (VI) CSO NE (400 mg/kg p.o.) + RT. Animals received the treatment 30 min before RT administration for 14 days. The outcomes of the motor/behavioural evaluations (rotarod test and locomotor activity), biochemical evaluations (estimation of malondialdehyde, nitrite, acetylcholine esterase, reduced glutathione, catalase and superoxide dismutase) and histopathological evaluation affirmed that the CSO NE treatment rendered a significant enhancement in the neuroprotective effects as compared to CSO administered alone. These results suggest that the oral bioavailability of CSO was escalated by its conversion to nanoform, thus imparting greater neuroprotection. The potential application of CSO NE was established in the management of PD.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad S, Beg ZH (2016) Evaluation of therapeutic effect of omega-6 linoleic acid and thymoquinone enriched extracts from Nigella sativa oil in the mitigation of lipidemic oxidative stress in rats. Nutrition 32:649–655

    Article  CAS  PubMed  Google Scholar 

  • Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:360438

    Article  PubMed  PubMed Central  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nature Neurosci 3:1301–1306

    Article  CAS  PubMed  Google Scholar 

  • Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  PubMed  Google Scholar 

  • Bezard E, Yue Z, Kirik D, Spillantini MG (2013) Animal models of Parkinson’s disease limits and relevance to neuroprotection studies. Mov Disord 28:61–70

    Article  CAS  PubMed  Google Scholar 

  • Blondeau N, Nguemeni C, Debruyne D, Piens M, Wu X, Pan H et al (2009) Subchronic alpha-linolenic acid treatment enhances brain plasticity and exerts an antidepressant effect: a versatile potential therapy for stroke. Neuropsychopharmacology 34:2548–2559

    Article  CAS  PubMed  Google Scholar 

  • Bullo M, Lamuela-Raventos R, Salas-Salvado J (2001) Mediterranean diet and oxidation: nuts and olive oil as important sources of fat and antioxidants. Curr Top Med Chem 11:1797–1810

    Article  Google Scholar 

  • Campos FF, Campmany ACC, Delgado GR, Serrano OL, Naveros BC (2012) Development and characterization of a novel nystatin-loaded nanoemulsion for the buccal treatment of candidosis ultrastructural effects and release studies. J Pharm Sci 101:3739–3752

    Article  CAS  Google Scholar 

  • Capitani MI, Spotorno V, Nolasco SM, Tomás MC (2012) Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina. LWT Food Sci Technol 45:94–102

    Article  CAS  Google Scholar 

  • Cereda E, Barichella M, Pezzoli G (2010) Controlled-protein dietary regimens for Parkinson’s disease. Nutr Neurosci 13:29–32

    Article  CAS  PubMed  Google Scholar 

  • Chandran G (2013) Neuroprotective effect of aqueous extract of Selaginella delicatula as evidenced by abrogation of rotenone-induced motor deficits, oxidative dysfunctions, and neurotoxicity in mice. Cell Mol Neurobiol 33:929–942

    Article  PubMed  Google Scholar 

  • Choi YT, Jung CH, Lee SR, Bae JH, Baek WK, Suh MH, Park J, Park CW, Suh SI (2001) The green tea polyphenol (-)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci 70:603–614

    Article  CAS  PubMed  Google Scholar 

  • da Marineli RS, Moraes EA, Lenquiste SA, Godoy AT, Eberlin MN, Maróstica MR Jr (2014) Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). LWT Food Sci Technol 59:1304–1310

    Article  CAS  Google Scholar 

  • da Marineli RS, Lenquiste SA, Moraes EA, Maróstica MR (2015a) Antioxidant potential of dietary chia seed and oil (Salvia hispanica L.) in diet-induced obese rats. Food Res Int 76(Pt 3):666–674

    Article  CAS  PubMed  Google Scholar 

  • da Marineli RS, Moura CS, Moraes ÉA, Lenquiste SA, Lollo PC, Morato PN, Amaya-Farfan J, Maróstica MR Jr (2015b) Chia (Salvia hispanica L.) enhances HSP, PGC-1α expressions and improves glucose tolerance in diet-induced obese rats. Nutrition 31:740–748

    Article  CAS  PubMed  Google Scholar 

  • Dąbrowski G, Konopka I, Czaplicki S, Tańska M (2016) Composition and oxidative stability of oil from Salvia hispanica L. seeds in relation to extraction method. Eur J Lipid Sci Technol 119:1600209

    Article  Google Scholar 

  • Das NR, Sharma SS (2015) Peroxisome proliferator activated receptor gamma coactivator 1 alpha: an emerging target for neuroprotection in Parkinson’s disease. CNS Neurol Disord Drug Targets 14:1024–1030

    Article  CAS  PubMed  Google Scholar 

  • Dawson VL, Dawson TM (1998) Nitric oxide in neurodegeneration. Prog Brain Res 118:215–229

    Article  CAS  PubMed  Google Scholar 

  • Debiyi OO, Sofowora FA (1978) Pytochemical screening of Nigerian medical plants II. Lloydia 41:234–246

    Google Scholar 

  • Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3:461–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckenstein F, Sofroniew M (1983) Identification of central cholinergic neurons containing both choline acetyltransferase and acetylcholinesterase and of central neurons containing only acetylcholinesterase. J Neurosci 3:2286–2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Fernandez I, Vidueiros S, Ayerza R, Coates W, Pallaro A (2008) Impact of chia (Salvia hispanica L.) on the immune system: preliminary study. Proc Nutr Soc. https://doi.org/10.1017/S0029665108006216

    Article  Google Scholar 

  • George J, Mok S, Moses D, Wilkins S, Bush A, Cherny R et al (2009) Targeting the progression of Parkinson’s disease. Curr Neuropharmacol 7:9–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15 N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  PubMed  Google Scholar 

  • Greenamyre JT, Cannon JR, Drolet R, Mastroberardino P-G (2010) Lessons from the rotenone model of Parkinson’s disease. Trends Pharmacol Sci 31:141–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunstone FD, Padley FB (1997) Lipid technologies and applications. Marcel Dekker, New York

    Google Scholar 

  • Han JM, Lee YJ, Lee SY, Kim EM, Moon Y, Kim HW, Hwang O (2007) Protective effect of sulforaphane against dopaminergic cell death. J Pharmacol Exp Ther 321:249–256

    Article  CAS  PubMed  Google Scholar 

  • Han K, Li X, Zhang Y, He Y, Hu R, Lu X, Li Q, Hui J (2020) Chia seed oil prevents high fat diet induced hyperlipidemia and oxidative stress in mice. Eur J Lipid Sci Technol 122:1900443

    Article  CAS  Google Scholar 

  • Hatcher H, Planalp R, Cho J, Torti FM, Torti SV (2008) Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 65:1631–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inden M, Kitamura Y, Takeuchi H, Yanagida T, Takata K, Kobayashi Y et al (2007) Neurodegeneration of mouse nigrostriatal dopaminergic system induced by repeated oral administration of rotenone is prevented by 4-phenylbutyrate, a chemical chaperone. J Neurochem 101:1491–1504

    Article  CAS  PubMed  Google Scholar 

  • IUPAC (1992) Standard methods for the analysis of oils, fats and derivates. In: Paquot C, Hautffenne A (eds) International union of pure and applied chemistry, 7th edn. Blackwell Scientific Publications Inc, Oxford, p 216

    Google Scholar 

  • Ixtaina VY, Martínez ML, Spotorno V, Mateo CM, Maestri DM, Diehl BWK et al (2011) Characterization of chia seed oils obtained by pressing and solvent extraction. J Food Compos Anal 24:166–174

    Article  CAS  Google Scholar 

  • Ixtaina VY, Nolasco SM, Tomás MC (2012) Oxidative stability of chia (Salvia hispanica L.) seed oil: effect of antioxidants and storage conditions. J Am Oil Chem Soc 89:1077–1090

    Article  CAS  Google Scholar 

  • Jeong SK, Park HJ, Park BD, Hwan Kim H (2010) Effectiveness of topical chia seed oil on pruritus of end-stage renal disease (ESRD) patients and healthy volunteers. Ann Dermatol 22:2010

    Article  Google Scholar 

  • Johnson ME, Bobrovskaya L (2015) An update on the rotenone models of Parkinson’s disease: their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicology 46:101–116

    Article  CAS  PubMed  Google Scholar 

  • Julio LM, Ixtaina VY, Fernández MA, Sánchez RT, Wagner JR, Nolasco SM et al (2015) Chia seed oil-in-water emulsions as potential delivery systems of ω-3 fatty acids. J Food Eng 162:48–55

    Article  CAS  Google Scholar 

  • Khan MM, Raza SS, Javed H, Ahmad A, Khan A, Islam F et al (2012) Rutin protects dopaminergic neurons from oxidative stress in an animal model of Parkinson’s disease. Neurotoxicol Res 22:1–15

    Article  Google Scholar 

  • Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195

    Article  CAS  PubMed  Google Scholar 

  • Lessenger JE, Reese BE (1999) Rational use of cholinesterase activity testing in pesticide poisoning. J Am Board Fam Med 12:307–314

    Article  CAS  Google Scholar 

  • Liu J, Killilea DW, Ames BN (2002) Age-associated mitochondrial oxidative decay: improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-L-carnitine and/or R-alpha-lipoic acid. Proc Natl Acad Sci USA 99:1876–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luck H (1963) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 2nd edn. Academic Press, London, pp 885–894

    Google Scholar 

  • Maker HS, Weiss C, Silides DJ, Cohen G (1981) Coupling of dopamine oxidation (monoamine oxidase activity) to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates. J Neurochem 36:589–593

    Article  CAS  PubMed  Google Scholar 

  • Manjunath M (2013) Effect of Withania somnifera supplementation on rotenone-induced oxidative damage in cerebellum and striatum of the male mice brain. Cent Nerv Syst Agents Med Chem 13:43–56

    Article  CAS  PubMed  Google Scholar 

  • Martin HL, Teismann P (2009) Glutathione—a review on itsrole and significance in Parkinson’s disease. FASEBJ 23:3263–3272

    Article  CAS  Google Scholar 

  • Martínez-Cruz O, Paredes-López O (2014) Phytochemical profile and nutraceutical potential of chia seeds (Salvia hispanica L.) by ultra high performance liquid chromatography. J Chromatogr A 1346:43–48

    Article  PubMed  Google Scholar 

  • McClements DJ (2013) Nanoemulsion-based oral delivery systems for lipophilic bioactive components: nutraceuticals and pharmaceuticals. Ther Deliv 4:841–857

    Article  CAS  PubMed  Google Scholar 

  • Md S, Shantakumar S, Narasu ML (2007) Pharmacological and biochemical evidence for the antidepressant effect of the herbal preparation Trans-01. Indian J Pharmacol 39:231–234

    Article  Google Scholar 

  • Meissner WG, Frasier M, Gasser T, Goetz CG, Lozano A, Piccini P et al (2011) Priorities in Parkinson’s disease research. Nat Rev Drug Discov 10:377–393

    Article  CAS  PubMed  Google Scholar 

  • Miao L, St Clair DK (2009) Regulation of superoxide dismutasegenes: implications in disease. Free Radic Biol Med 47:344–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohapel P, Leanza G, Kokaia M, Lindvall O (2005) Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiol Aging 26:939–946

    Article  CAS  PubMed  Google Scholar 

  • Moreadith RW, Fiskum G (1984) Isolation of mitochondria from ascites tumor cells permeabilized with digitonin. Anal Biochem 137:360–367

    Article  CAS  PubMed  Google Scholar 

  • Mori MA, Delattre AM, Carabelli B, Pudell C, Bortolanza M, Staziaki PV et al (2018) Neuroprotective effect of omega-3 polyunsaturated fatty acids in the 6-OHDA model of Parkinson’s disease is mediated by a reduction of inducible nitric oxide synthase. Nutr Neurosci 21:341–351

    Article  CAS  PubMed  Google Scholar 

  • Nandipati S, Litvan I (2016) Environmental exposures and Parkinson’s disease. Int J Environ Res Public Health 13:881

    Article  PubMed  PubMed Central  Google Scholar 

  • Navarro A, Sánchez Del Pino MJ, Gómez C, Peralta JL, Boveris A (2002) Behavioral dysfunction, brain oxidative stress, and impaired mitochondrial electron transfer in aging mice. Am J Physiol Regul Integr Comp Physiol 282:R985–R992

    Article  CAS  PubMed  Google Scholar 

  • Nishizaki T, Ikeuchi Y, Matsuoka T, Sumikawa K (1997) Short-term depression and long-term enhancement of ACh-gated channel currents induced by linoleic and linolenic acid. Brain Res 751:253–258

    Article  CAS  PubMed  Google Scholar 

  • Obeso JA, Rodríguez-Oroz MC, Rodríguez M, Lanciego JL, Artieda J, Gonzalo N et al (2000) Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci 23:S8–S19

    Article  CAS  PubMed  Google Scholar 

  • Oda Y (1999) Choline acetyltransferase: the structure, distribution and pathologic changes in the central nervous system. Pathol Int 49:921–937

    Article  CAS  PubMed  Google Scholar 

  • OECD (2008) Test No. 425: acute oral toxicity: up-and-down procedure. In: OECD guidelines for testing of chemicals. The Organisation of Economic Co-operation and Development. http://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-ofchemicals-section-4-health-effect. Accessed 16 Oct 2008

  • Indian Pharmacopoeia (2010) 6th edn. Ghaziabad: The Indian Pharmacopoeia Commission, Government of India

  • Poewe W, Lees A, Stern G (1986) Low-dose L-dopa therapy in Parkinson’s disease: a 6-year follow-up study. Neurol 36:1528–1530

    Article  CAS  Google Scholar 

  • Puspita L, Chung SY, Shim J (2017) Oxidative stress and cellular pathologies in Parkinson’s disease Mol. Brain 10:53

    Google Scholar 

  • Ramachandiran S, Hansen JM, Jones DP, Richardson JR, Miller GW (2007) Divergent mechanisms of paraquat, MPP+, and rotenone toxicity: oxidation of thioredoxin and caspase-3 activation. Toxicol Sci 95:163–171

    Article  CAS  PubMed  Google Scholar 

  • Reilly CA, Aust SD (1999) Measurement of lipid peroxidation. Curr Protoc Toxicol 2:1–13

    Google Scholar 

  • Reyes-Caudillo E, Tecante A, Valdivia-López MA (2008) Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem 107:656–663

    Article  CAS  Google Scholar 

  • Richter F, Hamann M, Richter A (2007) Chronic rotenone treatment induces behavioral effects but no pathological signs of parkinsonism in mice. J Neurosci Res 85:681–691

    Article  CAS  PubMed  Google Scholar 

  • Roopashree TS, Dang R, Rani RHS, Narendra C (2008) Antibacterial activity of antipsoriatic herbs: Cassia tora, Momordica charantia and Calendula officinalis. Int J Appl Res Nat Prod 1:20–28

    Google Scholar 

  • Rozas G, Garcia JL (1997) Drug-free evaluation of rat models of parkinsonism and nigral grafts using a new automated rotarod test. Brain Res 749:188–199

    Article  CAS  PubMed  Google Scholar 

  • Salvati S, Attorri L, Di Benedetto R, Di Biase A, Leonardi F (2006) Polyunsaturated fatty acids and neurological diseases. Mini Rev Med Chem 6:1201–1211

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1:1269

    Article  CAS  PubMed  Google Scholar 

  • Schuler F, Casida JE (2001) Functional coupling of PSST and ND1 subunits in NADH: ubiquinone oxidoreductase established by photoaffinity labelling. Biochim Biophys Acta Bioenerg 1506:79–87

    Article  CAS  Google Scholar 

  • Shashikumar S, Pradeep H, Chinnu S, Rajini PS, Rajanikant GK (2015) Alpha-linolenic acid suppresses dopaminergic neurodegeneration induced by 6-OHDA in C. elegans. Physiol Behav 151:563–569

    Article  CAS  PubMed  Google Scholar 

  • Silva C, Garcia VAS, Zanette CM (2016) Chia (Salvia hispanica L.) oil extraction using different organic solvents: oil yield, fatty acids profile and technological analysis of defatted meal. Int Food Res J 23:998–1004

    CAS  Google Scholar 

  • Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP, Hebenstreit G, Youdim MB (1998) Increased iron(III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 74:199–205

    Article  Google Scholar 

  • Sofowora A (1993) Phytochemical screening of medicinal plants and traditional medicine in Africa. Spectrum Books Ltd, Ibadan

    Google Scholar 

  • Surendran S, Matalon R, Tyring SK (2007) Neurochemical changes and therapeutical targets in phenylketonuria (PKU). In: Surendran S (ed) Neurochemistry of metabolic disease: lysosomal storage diseases, phenylketonuria and Canavan disease. Transworld Research Network, Trivandrum, pp 105–111

    Google Scholar 

  • Teng J, Hu X, Wang M, Tao N (2017) Fabrication of chia (Salvia hispanica L.) seed oil nanoemulsions using different emulsifiers. J Food Process Preserv 42:e13416

    Article  Google Scholar 

  • The Ayurvedic Pharmacopoeia of India (1996) Department of yoga and Naturopathy, Unani and Siddha, Ministry of Health and Family Welfare, Govt. of India, New Delhi

  • Trease GE, Evans WC (1989) Textbook of pharmacognosy, 12th edn. Balliese, Tindall and Co Publishers, London

    Google Scholar 

  • Urquiaga I, Leighton F (2000) Plant polyphenol antioxidants and oxidative stress. Biol Res 33:55–64

    Article  CAS  PubMed  Google Scholar 

  • von Wrangel C, Schwabe K, John N, Krauss JK, Alam M (2015) The rotenone-induced rat model of Parkinson’s disease: behavioral and electrophysiological findings. Behav Brain Res 279:52–61

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express gratitude to the College of Pharmaceutical Sciences, Dayananda Sagar University, Bengaluru, Karnataka for their support and facilities provided to fulfil this project. There is no funding received for this article.

Funding

Not available

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Geetha.

Ethics declarations

Ethical statement

All applicable guidelines for the care and use of animals were followed. The experimental protocols were approved by the institutional animal ethics committee (DSU/M.Pharm/IACE/17/2020–21) and conducted according to the CPCSEA guidelines, New Delhi, India.

Conflict of interest

Jyotsna Shankar has no conflict of interest. Geetha K.M. has no conflict of interest. Barnabas Wilson has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geetha, K.M., Shankar, J. & Wilson, B. Neuroprotective effect of chia seed oil nanoemulsion against rotenone induced motor impairment and oxidative stress in mice model of Parkinson’s disease. ADV TRADIT MED (ADTM) 23, 1091–1108 (2023). https://doi.org/10.1007/s13596-022-00648-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13596-022-00648-0

Keywords

Navigation