Skip to main content
Log in

Application of Metabolomics to Assess Effects of Controlled Dietary Interventions

  • Public Health and Translational Medicine (PW Franks and R Landberg, Section Editors)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

The utilization of metabolomics technologies as part of nutritional investigations has rapidly increased during the last few years. The application of both nuclear magnetic resonance (NMR) and mass spectrometry (MS) based technologies is providing wide information on both the diet-derived compounds and their metabolites related to specific foods or diets, as well as aiding the in-depth exploration of the endogenous metabolic phenomena related to different diets. The analytical accuracy nowadays enables examination of metabolite composition of both urine and plasma to very high molecular detail even at low concentrations, and will be focal in gaining wider metabolic understanding of the relationship between eating habits and maintenance of good health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Brennan L. Metabolomics in nutrition research: current status and perspectives. Biochem Soc Trans. 2013;41:670–3.

    Article  CAS  PubMed  Google Scholar 

  2. Wishart DS. Metabolomics: applications to food science and nutrition research. Trends Food Sci Technol. 2008;19:482–93.

    Article  CAS  Google Scholar 

  3. Rezzi S, Ramadan Z, Fay LB, Kochhar S. Nutritional metabonomics: applications and perspectives. J Proteome Res. 2007;6:513–25.

    Article  CAS  PubMed  Google Scholar 

  4. Scalbert A, Brennan L, Manach C, Andres-Lacueva C, et al. The food metabolome: a window over dietary exposure. Am.J.Clin.Nutr. 2014

  5. Andersen MB, Rinnan A, Manach C, Poulsen SK, et al. Untargeted metabolomics as a screening tool for estimating compliance to a dietary pattern. J Proteome Res. 2014;13:1405–18.

    Article  CAS  PubMed  Google Scholar 

  6. Fave G, Beckmann ME, Draper JH, Mathers JC. Measurement of dietary exposure: a challenging problem which may be overcome thanks to metabolomics? Genes Nutr. 2009;4:135–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Perez-Jimenez J, Hubert J, Hooper L, Cassidy A, et al. Urinary metabolites as biomarkers of polyphenol intake in humans: a systematic review. Am J Clin Nutr. 2010;92:801–9.

    Article  CAS  PubMed  Google Scholar 

  8. Cevallos-Cevallos JM, Reyes-De-Corcuera JI, Etxeberria E, Danyluk MD, Rodrick GE. Metabolomic analysis in food science: a review. Trends Food Sci Technol. 2009;20:557–66.

    Article  CAS  Google Scholar 

  9. McGhie TK, Rowan DD. Metabolomics for measuring phytochemicals, and assessing human and animal responses to phytochemicals, in food science. Mol Nutr Food Res. 2012;56:147–58.

    Article  CAS  PubMed  Google Scholar 

  10. Manach C, Hubert J, Llorach R, Scalbert A. The complex links between dietary phytochemicals and human health deciphered by metabolomics. Mol Nutr Food Res. 2009;53:1303–15.

    Article  CAS  PubMed  Google Scholar 

  11. Rodriguez-Mateos A, Vauzour D, Krueger CG, Shanmuganayagam D, et al. Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch Toxicol. 2014;88:1803–53.

    Article  CAS  PubMed  Google Scholar 

  12. Medina S, Domínguez-Perles R, Ferreres F, Tomás-Barberán FA, Gil-Izquierdo Á. The effects of the intake of plant foods on the human metabolome. TrAC Trends Anal Chem. 2013;52:88–99.

    Article  CAS  Google Scholar 

  13. Hollman PC. Unravelling of the health effects of polyphenols is a complex puzzle complicated by metabolism. Arch Biochem Biophys. 2014;559:100–5.

    Article  CAS  PubMed  Google Scholar 

  14. Zamora-Ros R, Touillaud M, Rothwell JA, Romieu I, Scalbert A. Measuring exposure to the polyphenol metabolome in observational epidemiologic studies: current tools and applications and their limits. Am J Clin Nutr. 2014;100:11–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Guertin KA, Moore SC, Sampson JN, Huang WY, et al. Metabolomics in nutritional epidemiology: identifying metabolites associated with diet and quantifying their potential to uncover diet-disease relations in populations. Am J Clin Nutr. 2014;100:208–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Martin FP, Rezzi S, Pere-Trepat E, Kamlage B, et al. Metabolic effects of dark chocolate consumption on energy, gut microbiota, and stress-related metabolism in free-living subjects. J Proteome Res. 2009;8:5568–79.

    Article  CAS  PubMed  Google Scholar 

  17. Pedersen SM, Nielsen NC, Andersen HJ, Olsson J, et al. The serum metabolite response to diet intervention with probiotic acidified milk in irritable bowel syndrome patients is indistinguishable from that of non-probiotic acidified milk by 1H NMR-based metabonomic analysis. Nutr. 2010;2:1141–55.

    CAS  Google Scholar 

  18. van Dorsten FA, Grun CH, van Velzen EJ, Jacobs DM, et al. The metabolic fate of red wine and grape juice polyphenols in humans assessed by metabolomics. Mol Nutr Food Res. 2010;54:897–908.

    Article  PubMed  Google Scholar 

  19. De Preter V, Ghebretinsae AH, Abrahantes JC, Windey K, et al. Impact of the synbiotic combination of Lactobacillus casei shirota and oligofructose-enriched inulin on the fecal volatile metabolite profile in healthy subjects. Mol Nutr Food Res. 2011;55:714–22.

    Article  PubMed  Google Scholar 

  20. Edmands WM, Beckonert OP, Stella C, Campbell A, et al. Identification of human urinary biomarkers of cruciferous vegetable consumption by metabonomic profiling. J Proteome Res. 2011;10:4513–21.

    Article  CAS  PubMed  Google Scholar 

  21. Elnenaei MO, Chandra R, Mangion T, Moniz C. Genomic and metabolomic patterns segregate with responses to calcium and vitamin D supplementation. Br J Nutr. 2011;105:71–9.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang Z, Liang Q, Wang Y, Zheng X, et al. Metabonomic study on women of reproductive age treated with nutritional intervention: screening potential biomarkers related to neural tube defects occurrence. Biomed Chromatogr. 2011;25:767–74.

    Article  CAS  PubMed  Google Scholar 

  23. Moazzami AA, Zhang JX, Kamal-Eldin A, Aman P, et al. Nuclear magnetic resonance-based metabolomics enable detection of the effects of a whole grain rye and rye bran diet on the metabolic profile of plasma in prostate cancer patients. J Nutr. 2011;141:2126–32.

    Article  CAS  PubMed  Google Scholar 

  24. O’Sullivan A, Gibney MJ, Brennan L. Dietary intake patterns are reflected in metabolomic profiles: potential role in dietary assessment studies. Am J Clin Nutr. 2011;93:314–21.

    Article  PubMed  Google Scholar 

  25. Ross AB, Bruce SJ, Blondel-Lubrano A, Oguey-Araymon S, et al. A whole-grain cereal-rich diet increases plasma betaine, and tends to decrease total and LDL-cholesterol compared with a refined-grain diet in healthy subjects. Br J Nutr. 2011;105:1492–502.

    Article  CAS  PubMed  Google Scholar 

  26. Russell WR, Gratz SW, Duncan SH, Holtrop G, et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr. 2011;93:1062–72.

    Article  CAS  PubMed  Google Scholar 

  27. Cheng J, Joyce A, Yates K, Aouizerat B, Sanyal AJ. Metabolomic profiling to identify predictors of response to vitamin E for non-alcoholic steatohepatitis (NASH). PLoS ONE. 2012;7, e44106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Martin FP, Montoliu I, Nagy K, Moco S, et al. Specific dietary preferences are linked to differing gut microbial metabolic activity in response to dark chocolate intake. J Proteome Res. 2012;11:6252–63. Extensive study implying analysis of urine and plasma with several metabolomics platforms.

    Article  CAS  PubMed  Google Scholar 

  29. Moazzami AA, Bondia-Pons I, Hanhineva K, Juntunen K, et al. Metabolomics reveals the metabolic shifts following an intervention with rye bread in postmenopausal women—a randomized control trial. Nutr J. 2012;11:88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Nieman DC, Gillitt N, Jin F, Henson DA, et al. Chia seed supplementation and disease risk factors in overweight women: a metabolomics investigation. J Altern Complement Med. 2012;18:700–8.

    Article  PubMed  Google Scholar 

  31. Rasmussen LG, Winning H, Savorani F, Toft H, et al. Assessment of the effect of high or low protein diet on the human urine metabolome as measured by NMR. Nutr. 2012;4:112–31.

    CAS  Google Scholar 

  32. Vazquez-Fresno R, Llorach R, Alcaro F, Rodriguez MA, et al. (1)H-NMR-based metabolomic analysis of the effect of moderate wine consumption on subjects with cardiovascular risk factors. Electrophoresis. 2012;33:2345–54.

    Article  CAS  PubMed  Google Scholar 

  33. Armah CN, Traka MH, Dainty JR, Defernez M, et al. A diet rich in high-glucoraphanin broccoli interacts with genotype to reduce discordance in plasma metabolite profiles by modulating mitochondrial function. Am J Clin Nutr. 2013;98:712–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Bondia-Pons I, Barri T, Hanhineva K, Juntunen K, et al. UPLC-QTOF/MS metabolic profiling unveils urinary changes in humans after a whole grain rye versus refined wheat bread intervention. Mol Nutr Food Res. 2013;57:412–22.

    Article  CAS  PubMed  Google Scholar 

  35. Bondia-Pons I, Canellas N, Abete I, Rodriguez MA, et al. Nutri-metabolomics: subtle serum metabolic differences in healthy subjects by NMR-based metabolomics after a short-term nutritional intervention with two tomato sauces. OMICS. 2013;17:611–8.

    Article  CAS  PubMed  Google Scholar 

  36. Boto-Ordonez M, Urpi-Sarda M, Queipo-Ortuno MI, Corella D, et al. Microbial metabolomic fingerprinting in urine after regular dealcoholized red wine consumption in humans. J Agric Food Chem. 2013;61:9166–75.

    Article  CAS  PubMed  Google Scholar 

  37. Cialdella-Kam L, Nieman DC, Sha W, Meaney MP, et al. Dose–response to 3 months of quercetin-containing supplements on metabolite and quercetin conjugate profile in adults. Br J Nutr. 2013;109:1923–33.

    Article  CAS  PubMed  Google Scholar 

  38. da Silva VR, Rios-Avila L, Lamers Y, Ralat MA, et al. Metabolite profile analysis reveals functional effects of 28-day vitamin B-6 restriction on one-carbon metabolism and tryptophan catabolic pathways in healthy men and women. J Nutr. 2013;143:1719–27.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Johansson-Persson A, Barri T, Ulmius M, Önning G, Dragsted L. LC-QTOF/MS metabolomic profiles in human plasma after a 5-week high dietary fiber intake. Anal Bioanal Chem. 2013;405:4799–809.

    Article  CAS  PubMed  Google Scholar 

  40. Kim MJ, Yang HJ, Kim JH, Ahn CW, et al. Obesity-related metabolomic analysis of human subjects in black soybean peptide intervention study by ultraperformance liquid chromatography and quadrupole-time-of-flight mass spectrometry. J Obes. 2013;2013:874981.

  41. Llorach R, Urpi-Sarda M, Tulipani S, Garcia-Aloy M, et al. Metabolomic fingerprint in patients at high risk of cardiovascular disease by cocoa intervention. Mol Nutr Food Res. 2013;57:962–73.

    Article  CAS  PubMed  Google Scholar 

  42. May DH, Navarro SL, Ruczinski I, Hogan J, et al. Metabolomic profiling of urine: response to a randomised, controlled feeding study of select fruits and vegetables, and application to an observational study. Br J Nutr. 2013;110:1760–70. Metabolite profiling of two extreme diets in terms of phytochemical content on both cross-sectional study and randomized trial.

    Article  CAS  PubMed  Google Scholar 

  43. Mondul AM, Sampson JN, Moore SC, Weinstein SJ, et al. Metabolomic profile of response to supplementation with beta-carotene in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Am J Clin Nutr. 2013;98:488–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Pujos-Guillot E, Hubert J, Martin JF, Lyan B, et al. Mass spectrometry-based metabolomics for the discovery of biomarkers of fruit and vegetable intake: citrus fruit as a case study. J.Proteome Res. 2013

  45. Andersen MB, Kristensen M, Manach C, Pujos-Guillot E, et al. Discovery and validation of urinary exposure markers for different plant foods by untargeted metabolomics. Anal Bioanal Chem. 2014;406:1829–44.

    Article  CAS  PubMed  Google Scholar 

  46. Bajaj JS, Heuman DM, Hylemon PB, Sanyal AJ, et al. Randomised clinical trial: Lactobacillus GG modulates gut microbiome, metabolome and endotoxemia in patients with cirrhosis. Aliment Pharmacol Ther. 2014;39:1113–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Hjerpsted J, Ritz C, Schou S, Tholstrup T, Dragsted L. Effect of cheese and butter intake on metabolites in urine using an untargeted metabolomics approach. Metabolomics. 2014;10:1176–85.

    Article  CAS  Google Scholar 

  48. Jacobs DM, Hodgson AB, Randell RK, Mahabir-Jagessar-T K, et al. Metabolic response to decaffeinated green tea extract during rest and moderate-intensity exercise. J Agric Food Chem. 2014;62:9936–43.

    Article  CAS  PubMed  Google Scholar 

  49. Kien CL, Bunn JY, Stevens R, Bain J, et al. Dietary intake of palmitate and oleate has broad impact on systemic and tissue lipid profiles in humans. Am J Clin Nutr 2014;99:436–445.

  50. Lamichhane S, Yde CC, Forssten S, Ouwehand AC, et al. Impact of dietary polydextrose fiber on the human gut metabolome. J Agric Food Chem. 2014;62:9944–51.

    Article  CAS  PubMed  Google Scholar 

  51. Lankinen M, Kolehmainen M, Jaaskelainen T, Paananen J, et al. Effects of whole grain, fish and bilberries on serum metabolic profile and lipid transfer protein activities: a randomized trial (Sysdimet). PLoS ONE. 2014;9, e90352.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Perez-Cornago A, Brennan L, Ibero-Baraibar I, Hermsdorff HH, et al. Metabolomics identifies changes in fatty acid and amino acid profiles in serum of overweight older adults following a weight loss intervention. J Physiol Biochem. 2014;70:593–602.

    Article  CAS  PubMed  Google Scholar 

  53. Bondia-Pons I, Canellas N, Abete I, Rodriguez MA, et al. Nutri-metabolomics: subtle serum metabolic differences in healthy subjects by NMR-based metabolomics after a short-term nutritional intervention with two tomato sauces. OMICS. 2013;17:711–8.

  54. Gonzalez-Guardia L, Yubero-Serrano EM, Delgado-Lista J, Perez-Martinez P, et al. Effects of the Mediterranean diet supplemented with coenzyme Q10 on metabolomic profiles in elderly men and women. J Gerontol A Biol Sci Med Sci. 2015;70:78–84.

    Article  PubMed  Google Scholar 

  55. Hanhineva K, Lankinen MA, Pedret A, Schwab U, et al. Nontargeted metabolite profiling discriminates diet-specific biomarkers for consumption of whole grains, fatty fish, and bilberries in a randomized controlled trial. J Nutr. 2015;145:7–17.

    Article  CAS  PubMed  Google Scholar 

  56. Piccolo BD, Keim NL, Fiehn O, Adams SH, et al. Habitual physical activity and plasma metabolomic patterns distinguish individuals with low vs. high weight loss during controlled energy restriction. J Nutr. 2015;145:681–90.

    Article  CAS  PubMed  Google Scholar 

  57. Piccolo BD, Comerford KB, Karakas SE, Knotts TA, et al. Whey protein supplementation does not alter plasma branched-chained amino acid profiles but results in unique metabolomics patterns in obese women enrolled in an 8-week weight loss trial. J Nutr. 2015;145:691–700. Comprehensive metabolomics investigation demonstrating endogenous metabolic shift following differential dietary protein intake.

    Article  CAS  PubMed  Google Scholar 

  58. Zheng H, Yde CC, Clausen MR, Kristensen M, et al. Metabolomics investigation to shed light on cheese as a possible piece in the French paradox puzzle. J Agric Food Chem. 2015;63:2830–9.

    Article  CAS  PubMed  Google Scholar 

  59. Heinzmann SS, Brown IJ, Chan Q, Bictash M, et al. Metabolic profiling strategy for discovery of nutritional biomarkers: proline betaine as a marker of citrus consumption. Am J Clin Nutr. 2010;92:436–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. van Velzen EJ, Westerhuis JA, van Duynhoven JP, van Dorsten FA, et al. Phenotyping tea consumers by nutrikinetic analysis of polyphenolic end-metabolites. J Proteome Res. 2009;8:3317–30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kati Hanhineva.

Ethics declarations

Conflict of Interest

Kati Hanhineva declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Public Health and Translational Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanhineva, K. Application of Metabolomics to Assess Effects of Controlled Dietary Interventions. Curr Nutr Rep 4, 365–376 (2015). https://doi.org/10.1007/s13668-015-0148-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-015-0148-0

Keywords

Navigation