Skip to main content
Log in

A high flux graphene oxide nanoparticles embedded in PAN nanofiber microfiltration membrane for water treatment applications with improved anti-fouling performance

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

A high flux and anti-fouling graphene oxide (GO) nanoparticles embedded in polyacrylonitrile (PAN) nanofiber microfiltration membranes (PANGMs) were fabricated through the facile electrospinning method and were characterized by water treatment applications. The synthesized GO nanoparticles and GO nanoparticles embedded in PAN nanofiber membranes were characterized by FESEM, FTIR, and EDS. SEM images showed that the PANGMs possessed randomly overlaid fibers with a network-like highly porous structure similar to the pristine PAN nanofiber membrane, while agglomeration of GO nanoparticles was observed at high GO concentration. The introduction of GO nanoparticles into the PAN polymeric matrix significantly increased the permeation flux of the resulting membrane in both dead-end and cross-flow filtration systems. A high flux recovery ratio of 96.6% and a low irreversible fouling ratio of 3.4% were obtained at 2% (wt.) GO nanoparticles. More importantly, a high flux recovery ratio of GO nanoparticles embedded in PAN nanofiber membrane was retained after 20 repeated cycles of activated sludge suspension filtration. Therefore, it can speculate that the incorporation of GO nanoparticles into the PAN nanofibers could efficiently improve the anti-fouling ability of membranes which had opened up an alternative for the preparation of high flux and anti-fouling microfiltration membranes in practical water treatment applications such as membrane bioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Moradi G, Zinadini S, Dabirian F, Rajabi L (2019) Polycitrate-para-aminobenzoate alumoxane nanoparticles as a novel nanofiller for enhancement performance of electrospun PAN membranes. Sep Purif Technol 213:224–234

    CAS  Google Scholar 

  2. Moradi G, Zinadini S, Rajabi L, Derakhshan AA (2020) Removal of heavy metal ions using a new high performance nanofiltration membrane modified with curcumin boehmite nanoparticles. Chem Eng J 390:124546

    CAS  Google Scholar 

  3. Ma W, Ding Y, Zhang M, Gao S, Li Y, Huang C, Fu G (2020) Nature-inspired chemistry toward hierarchical superhydrophobic, antibacterial and biocompatible nanofibrous membranes for effective UV-shielding, self-cleaning and oil-water separation. J Hazard Mater 384:121476

    PubMed  Google Scholar 

  4. Yoon K, Kim K, Wang X, Fang D, Hsiao BS, Chu B (2006) High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 47:2434–2441

    CAS  Google Scholar 

  5. Moradi G, Dabirian F, Mohammadi P, Rajabi L, Babaei M, Shiri N (2017) Electrospun fumarate ferroxane/polyacrylonitrile nanocomposite nanofibers adsorbent for lead removal from aqueous solution: characterization and process optimization by response surface methodology. Chem Eng Res Design 129:182–196

    Google Scholar 

  6. Perez-Puyana V, Felix M, Cabrera L, Romero A, Guerrero A (2019) Development of gelatin/chitosan membranes with controlled microstructure by electrospinning. Iran Polym J 28:921–931

    CAS  Google Scholar 

  7. Cao Q, Wan Y, Qiang J, Yang R, Fu J, Wang H, Gao W, Ko F (2014) Effect of sonication treatment on electrospinnability of high-viscosity PAN solution and mechanical performance of microfiber mat. Iran Polym J 23:947–953

    CAS  Google Scholar 

  8. Zhang L, Luo J, Menkhaus TJ, Varadaraju H, Sun Y, Fong H (2011) Antimicrobial nano-fibrous membranes developed from electrospun polyacrylonitrile nanofibers. J Membr Sci 369:499–505

    CAS  Google Scholar 

  9. Shi J, Kang H, Li N, Teng K, Sun W, Xu Z, Qian X, Liu Q (2019) Chitosan sub-layer binding and bridging for nanofiber-based composite forward osmosis membrane. Appl Surf Sci 478:38–48

    CAS  Google Scholar 

  10. Xu Z, Li X, Teng K, Zhou B, Ma M, Shan M, Jiao K, Qian X, Fan J (2017) High flux and rejection of hierarchical composite membranes based on carbon nanotube network and ultrathin electrospun nanofibrous layer for dye removal. J Membr Sci 535:94–102

    CAS  Google Scholar 

  11. Wang Q, Du Y, Feng Q, Huang F, Lu K, Liu J, Wei Q (2013) Nanostructures and surface nanomechanical properties of polyacrylonitrile/graphene oxide composite nanofibers by electrospinning. J Appl Polym Sci 128:1152–1157

    CAS  Google Scholar 

  12. Vatanpour V, Madaeni SS, Rajabi L, Zinadini S, Derakhshan AA (2012) Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes. J Membr Sci 401:132–143

    Google Scholar 

  13. Suja P, Reshmi C, Sagitha P, Sujith A (2017) Electrospun nanofibrous membranes for water purification. Polym Rev 57:467–504

    CAS  Google Scholar 

  14. Arif Z, Sethy NK, Kumari L, Mishra PK, Verma B (2019) Antifouling behaviour of PVDF/TiO2 composite membrane: a quantitative and qualitative assessment. Iran Polym J 28:301–312

    CAS  Google Scholar 

  15. Atkinson AJ, Wang J, Grzebyk K, Zhang Z, Jung D, Zeng D, Pollard A, Gold A, Coronell O (2019) Scalable fabrication of anti-biofouling membranes through 2-aminoimidazole incorporation during polyamide casting. J Membr Sci 579:151–161

    CAS  Google Scholar 

  16. Moradi G, Zinadini S, Rajabi L, Dadari S (2018) Fabrication of high flux and antifouling mixed matrix fumarate-alumoxane/PAN membranes via electrospinning for application in membrane bioreactors. Appl Surf Sci 427:830–842

    CAS  Google Scholar 

  17. Miller DJ, Kasemset S, Paul DR, Freeman BD (2014) Comparison of membrane fouling at constant flux and constant transmembrane pressure conditions. J Membr Sci 454:505–515

    CAS  Google Scholar 

  18. Liu C, Lee J, Small C, Ma J, Elimelech M (2017) Comparison of organic fouling resistance of thin-film composite membranes modified by hydrophilic silica nanoparticles and zwitterionic polymer brushes. J Membr Sci 544:135–142

    CAS  Google Scholar 

  19. Huang L, Arena JT, Manickam SS, Jiang X, Willis BG, McCutcheon JR (2014) Improved mechanical properties and hydrophilicity of electrospun nanofiber membranes for filtration applications by dopamine modification. J Membr Sci 460:241–249

    CAS  Google Scholar 

  20. Bahmani P, Maleki A, Daraei H, Khamforoush M, Rezaee R, Gharibi F, Tkachev AG, Burakov AE, Agarwal S, Gupta VK (2017) High-flux ultrafiltration membrane based on electrospun polyacrylonitrile nanofibrous scaffolds for arsenate removal from aqueous solutions. J Colloid Interf Sci 506:564–571

    CAS  Google Scholar 

  21. Mei Y, Yao C, Fan K, Li X (2012) Surface modification of polyacrylonitrile nanofibrous membranes with superior antibacterial and easy-cleaning properties through hydrophilic flexible spacers. J Membr Sci 417:20–27

    Google Scholar 

  22. Yoon K, Hsiao BS, Chu B (2009) High flux nanofiltration membranes based on interfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrous scaffolds. J Membr Sci 326:484–492

    CAS  Google Scholar 

  23. Phan D-N, Rebia RA, Saito Y, Kharaghani D, Khatri M, Tanaka T, Lee H, Kim I-S (2020) Zinc oxide nanoparticles attached to polyacrylonitrile nanofibers with hinokitiol as gluing agent for synergistic antibacterial activities and effective dye removal. J Indust Eng Chem 85:258–268

    CAS  Google Scholar 

  24. Zhang C-L, Yu S-H (2014) Nanoparticles meet electrospinning: recent advances and future prospects. Chem Soc Rev 43:4423–4448

    CAS  PubMed  Google Scholar 

  25. Kim J, Van der Bruggen B (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ Pollut 158:2335–2349

    CAS  PubMed  Google Scholar 

  26. Du H, Li J, Zhang J, Su G, Li X, Zhao Y (2011) Separation of hydrogen and nitrogen gases with porous graphene membrane. J Phys Chem C 115:23261–23266

    CAS  Google Scholar 

  27. Heo Y, Im H, Kim J (2013) The effect of sulfonated graphene oxide on sulfonated poly (ether ether ketone) membrane for direct methanol fuel cells. J Membr Sci 425:11–22

    Google Scholar 

  28. Zhao Y, Xu Z, Shan M, Min C, Zhou B, Li Y, Li B, Liu L, Qian X (2013) Effect of graphite oxide and multi-walled carbon nanotubes on the microstructure and performance of PVDF membranes. Sep Purif Technol 103:78–83

    CAS  Google Scholar 

  29. Liu Q, Chen Z, Pei X, Guo C, Teng K, Hu Y, Xu Z, Qian X (2020) Review: applications, effects and the prospects for electrospun nanofibrous mats in membrane separation. J Mater Sci 55:893–924

    CAS  Google Scholar 

  30. Zhang J, Xu Z, Shan M, Zhou B, Li Y, Li B, Niu J, Qian X (2013) Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes. J Membr Sci 448:81–92

    CAS  Google Scholar 

  31. Xu Z, Wu T, Shi J, Teng K, Wang W, Ma M, Li J, Qian X, Li C, Fan J (2016) Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment. J Membr Sci 520:281–293

    CAS  Google Scholar 

  32. Kang H, Wang W, Shi J, Xu Z, Lv H, Qian X, Liu L, Jing M, Li F, Niu J (2019) Interlamination restrictive effect of carbon nanotubes for graphene oxide forward osmosis membrane via layer by layer assembly. Appl Surf Sci 465:1103–1106

    CAS  Google Scholar 

  33. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    CAS  Google Scholar 

  34. Ren L-F, Xia F, Shao J, Zhang X, Li J (2017) Experimental investigation of the effect of electrospinning parameters on properties of superhydrophobic PDMS/PMMA membrane and its application in membrane distillation. Desalination 404:155–166

    CAS  Google Scholar 

  35. Yarin AL, Koombhongse S, Reneker DH (2001) Bending instability in electrospinning of nanofibers. J Appl Phys 89:3018–3026

    CAS  Google Scholar 

  36. Moradi G, Rajabi L, Dabirian F, Zinadini S (2018) Biofouling alleviation and flux enhancement of electrospun PAN microfiltration membranes by embedding of para-aminobenzoate alumoxane nanoparticles. J Appl Polym Sci 135:45738

    Google Scholar 

  37. Arribas P, García-Payo M, Khayet M, Gil L (2020) Improved antifouling performance of polyester thin film nanofiber composite membranes prepared by interfacial polymerization. J Membr Sci 598:117774

    CAS  Google Scholar 

  38. Kamari S, Shahbazi A (2020) Biocompatible Fe3O4@SiO2-NH2 nanocomposite as a green nanofiller embedded in PES–nanofiltration membrane matrix for salts, heavy metal ion and dye removal: long–term operation and reusability tests. Chemosphere 243:125282

    CAS  PubMed  Google Scholar 

  39. Hosseini S, Alibakhshi H, Jashni E, Parvizian F, Shen J, Taheri M, Ebrahimi M, Rafiei N (2020) A novel layer-by-layer heterogeneous cation exchange membrane for heavy metal ions removal from water. J Hazard Mater 381:120884

    CAS  PubMed  Google Scholar 

  40. Pakbaz M, Maghsoud Z (2017) Performance evaluation of polyvinylchloride/polyacrylonitrile ultrafiltration blend membrane. Iran Polym J 26:833–849

    CAS  Google Scholar 

  41. Zinadini S, Zinatizadeh AA, Rahimi M, Vatanpour V, Zangeneh H (2014) Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J Membr Sci 453:292–301

    CAS  Google Scholar 

  42. Liang B, Zhan W, Qi G, Lin S, Nan Q, Liu Y, Cao B, Pan K (2015) High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination applications. J Mater Chem A 3:5140–5147

    CAS  Google Scholar 

  43. Lee E-J, An AK, He T, Woo YC, Shon HK (2016) Electrospun nanofiber membranes incorporating fluorosilane-coated TiO2 nanocomposite for direct contact membrane distillation. J Membr Sci 520:145–154

    CAS  Google Scholar 

  44. Heikkilä P, Harlin A (2008) Parameter study of electrospinning of polyamide-6. Eur Polym J 44:3067–3079

    Google Scholar 

  45. Zhang D, Karki AB, Rutman D, Young DP, Wang A, Cocke D, Ho TH, Guo Z (2009) Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: fabrication and property analysis. Polymer 50:4189–4198

    CAS  Google Scholar 

  46. Shahabadi SMS, Mousavi SA, Bastani D (2016) High flux electrospun nanofiberous membrane: preparation by statistical approach, characterization, and microfiltration assessment. J Taiwan Inst Chem Eng 59:474–483

    Google Scholar 

  47. Wang R, Liu Y, Li B, Hsiao BS, Chu B (2012) Electrospun nanofibrous membranes for high flux microfiltration. J Membr Sci 392:167–174

    Google Scholar 

  48. Wang Q, Wang Z, Zhang J, Wang J, Wu Z (2014) Antifouling behaviours of PVDF/nano-TiO2 composite membranes revealed by surface energetics and quartz crystal microbalance monitoring. RSC Adv 4:43590–43598

    CAS  Google Scholar 

  49. Naraghi M, Arshad S, Chasiotis I (2011) Molecular orientation and mechanical property size effects in electrospun polyacrylonitrile nanofibers. Polymer 52:1612–1618

    CAS  Google Scholar 

  50. Pan S-F, Dong Y, Zheng Y-M, Zhong L-B, Yuan Z-H (2017) Self-sustained hydrophilic nanofiber thin film composite forward osmosis membranes: preparation, characterization and application for simulated antibiotic wastewater treatment. J Membr Sci 523:205–215

    CAS  Google Scholar 

  51. Zhang H, Nie H, Li S, White CJB, Zhu L (2009) Crosslinking of electrospun polyacrylonitrile/hydroxyethyl cellulose composite nanofibers. Mater Lett 63:1199–1202

    CAS  Google Scholar 

  52. Wang Q, Wang Z, Wu Z (2012) Effects of solvent compositions on physicochemical properties and anti-fouling ability of PVDF microfiltration membranes for wastewater treatment. Desalination 297:79–86

    CAS  Google Scholar 

  53. Zhang B, Liu L, Xie S, Shen F, Yan H, Wu H, Wan Y, Yu M, Ma H, Li L (2014) Built-up superhydrophobic composite membrane with carbon nanotubes for water desalination. RSC Adv 4:16561–16566

    CAS  Google Scholar 

  54. Pi J-K, Yang H-C, Wan L-S, Wu J, Xu Z-K (2016) Polypropylene microfiltration membranes modified with TiO2 nanoparticles for surface wettability and antifouling property. J Membr Sci 500:8–15

    CAS  Google Scholar 

  55. Gopal R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T (2006) Electrospun nanofibrous filtration membrane. J Membr Sci 281:581–586

    CAS  Google Scholar 

  56. Augustine R, Dominic EA, Reju I, Kaimal B, Kalarikkal N, Thomas S (2014) Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing. RSC Adv 4:24777–24785

    CAS  Google Scholar 

  57. Qayum A, Wei J, Li Q, Chen D, Jiao X, Xia Y (2019) Efficient decontamination of multi-component wastewater by hydrophilic electrospun PAN/AgBr/Ag fibrous membrane. Chem Eng J 361:1255–1263

    CAS  Google Scholar 

  58. Maziya K, Dlamini BC, Malinga SP (2020) Hyperbranched polymer nanofibrous membrane grafted with silver nanoparticles for dual antifouling and antibacterial properties against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. React Funct Polym 148:104494

    CAS  Google Scholar 

  59. Msomi P, Musyoka S, Mhlanga S, Nxumalo E (2015) Evaluation of nanofiber mats decorated with silver nanoparticles for organic fouling control. Mater Today Proc 2:4158–4166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirus Zinadini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, G., Zinadini, S. A high flux graphene oxide nanoparticles embedded in PAN nanofiber microfiltration membrane for water treatment applications with improved anti-fouling performance. Iran Polym J 29, 827–840 (2020). https://doi.org/10.1007/s13726-020-00842-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-020-00842-4

Keywords

Navigation