Skip to main content

Advertisement

Log in

Synthesis, rheological characterization, and antibacterial activity of polyvinyl alcohol (PVA)/ zinc oxide nanoparticles wound dressing, achieved under electron beam irradiation

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

An antibacterial wound dressing hydrogel was synthesized from biopolymers and a semiconductor nanomaterial by gamma irradiation, and applied in a simulated environment. Polyvinyl alcohol (PVA)/agar hydrogel was chosen due to its biocompatibility and good swelling to absorb wound exudates and make a moist environment to accelerate the wound healing process. Zinc oxide nanoparticles were synthesized and combined with the hydrogel due to their antibacterial activity as a wound dressing aid and the hydrophilic nature to enhance swelling capacity by facilitating water flow in the hydrogel. Hydrogel samples based on PVA/agar containing low amounts of zinc oxide nanoparticles were prepared by gamma irradiation to meet all the requirements of a wound dressing. Water absorption, swelling behavior and pH sensitivity were studied and showed an excellent water swelling capacity. Scanning electron microscopy (SEM) and UV–Vis spectroscopy analyses were employed, where dispersion state of nanoparticles played a key role. Antibacterial activity mechanisms and the resistance to gram-positive bacteria were tested by the disk diffusion method, and the developed hydrogel revealed resistance against gram-positive bacteria. A cone and plate rheometer was used to capture the rheological response of hydrogel. Reduction in viscosity and elastic modulus was due to increasing the amount of zinc oxide nanoparticles. Analyses on mechanical properties approved that hydrogels had enough strength for wound dressing to resist tear once stretched.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Winter GD (1962) Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 193:293

    Article  CAS  PubMed  Google Scholar 

  2. Kapanya A, Somsunan R, Phasayavan W, Molloy R, Jiranusornkul S (2020) Effect of molecular weight of poly (ethylene glycol) as humectant in interpenetrating polymer network hydrogels based on poly (sodium AMPS) and gelatin for wound dressing applications. Int J Polym Mater Polym Biomater 70:496–506

    Article  CAS  Google Scholar 

  3. Field CK, Kerstein MD (1994) Overview of wound healing in a moist environment. Am J Surg 167:S2–S6

    Article  Google Scholar 

  4. Wallace LA, Gwynne L, Jenkins T (2019) Challenges and opportunities of pH in chronic wounds. Ther Deliv 10:719–735

    Article  CAS  PubMed  Google Scholar 

  5. Debele TA, Su WP (2020) Polysaccharide and protein-based functional wound dressing materials and applications. Int J Polym Mater Polym Biomater 17:1–22

    CAS  Google Scholar 

  6. Kumar P, Lakshmanan VK, Biswas R, Nair SV, Jayakumar R (2012) Synthesis and biological evaluation of chitin hydrogel/nano ZnO composite bandage as antibacterial wound dressing. J Biomed Nanotechnol 8:891–900

    Article  CAS  PubMed  Google Scholar 

  7. Tsai HC, Shu HC, Huang LC, Chen CM (2019) A randomized clinical trial comparing a collagen-based composite dressing versus topical antibiotic ointment on healing full-thickness skin wounds to promote epithelialization. Formosan J Surg 52:52

    Article  Google Scholar 

  8. Balakrishnan B, Mohanty M, Umashankar P, Jayakrishnan A (2005) Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26:6335–6342

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Zhu C, Fan D, Fu R, Ma P, Duan Z, Li X, Lei H, Chi L (2020) Construction of porous sponge-like PVA-CMC-PEG hydrogels with pH-sensitivity via phase separation for wound dressing. Int J Polym Mater Polym Biomater 69:505–515

    Article  CAS  Google Scholar 

  10. Khalilipour A, Paydayesh A (2019) Characterization of polyvinyl alcohol/ZnO nanocomposite hydrogels for wound dressings. J Macromol Sci B 58:371–384

    Article  CAS  Google Scholar 

  11. Leawhiran N, Pavasant P, Soontornvipart K, Supaphol P (2014) Gamma irradiation synthesis and characterization of AgNP/gelatin/PVA hydrogels for antibacterial wound dressings. J Appl Polym Sci 5:131

    Google Scholar 

  12. Sirousazar M, Khadivi H, Delir S (2020) Swelling and drying mechanisms of freeze-thawed polyvinyl alcohol/egg white/montmorillonite bionanocomposite hydrogels. J Macromol Sci B 59:309–330

    Article  CAS  Google Scholar 

  13. Li W, Wu L, Xu Z, Liu Z (2020) Adhesion-to-fibers and film properties of etherified-oxidized cassava starch/polyvinyl alcohol blends. Iran Polym J 29:331–339

    Article  CAS  Google Scholar 

  14. Sellappan LK, Anandhavelu S, Doble M, Perumal G, Jeon JH, Vikraman D, Kim HS (2020) Biopolymer film fabrication for skin mimetic tissue regenerative wound dressing applications. Int J Polym Mater Polym Biomater 17:12–18

    Google Scholar 

  15. Liu Y, Lv Y, An M, Li F, Lu Y, Song J (2019) Characterization of chitosan-gelatin blend scaffolds. J Macromol Sci B 58:634–644

    Article  CAS  Google Scholar 

  16. Chen W, Bu Y, Li D, Liu C, Chen G, Wan X, Li N (2019) High-strength, tough, and self-healing hydrogel based on carboxymethyl cellulose. Cellulose 27:853–865

    Article  CAS  Google Scholar 

  17. Montaser A, Rehan M, El-Naggar ME (2019) pH-Thermosensitive hydrogel based on polyvinyl alcohol/sodium alginate/N-isopropyl acrylamide composite for treating re-infected wounds. Int JBbiol Macromol 124:1016–1024

    Article  CAS  Google Scholar 

  18. Raafat AI, Ali AE-H (2019) A novel Lawsonia inermis (Henna)/(hydroxyethylcellulose/polyvinylpyrrolidone) wound dressing hydrogel: radiation synthesis, characterization and biological evaluation. Polym Bull 76:4069–4086

    Article  CAS  Google Scholar 

  19. Zeinali A, Sirousazar M, Dastgerdi ZH, Kheiri F (2020) Gelatin/montmorillonite and gelatin/polyvinyl alcohol/montmorillonite bionanocomposite hydrogels: microstructural, swelling and drying properties. J Macromol Sci B 59:263–283

    Article  CAS  Google Scholar 

  20. Kim I, Yoo M, Seo J, Park S, Na H, Lee H, Kim S, Cho C (2007) Evaluation of semi-interpenetrating polymer networks composed of chitosan and poloxamer for wound dressing application. Int J Pharm 341:35–43

    Article  CAS  PubMed  Google Scholar 

  21. Massoumi H, Nourmohammadi J, Marvi MS, Moztarzadeh F (2019) Comparative study of the properties of sericin-gelatin nanofibrous wound dressing containing halloysite nanotubes loaded with zinc and copper ions. Int J Polym Mater Polym Biomater 68:1142–1153

    Article  CAS  Google Scholar 

  22. Bafandeh MR, Mojarrabian HM, Doostmohammadi A (2019) Poly (vinyl alcohol)/chitosan/akermanite nanofibrous scaffolds prepared by electrospinning. J Macromol Sci B 58:749–759

    Article  CAS  Google Scholar 

  23. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242

    Article  CAS  Google Scholar 

  24. Shitole AA, Raut PW, Khandwekar A, Sharma N, Baruah M (2019) Design and engineering of polyvinyl alcohol based biomimetic hydrogels for wound healing and repair. J Polym Res 26:201

    Article  CAS  Google Scholar 

  25. Parsa P, Paydayesh A, Davachi SM (2019) Investigating the effect of tetracycline addition on nanocomposite hydrogels based on polyvinyl alcohol and chitosan nanoparticles for specific medical applications. Int J Biol Macromol 121:1061–1069

    Article  CAS  PubMed  Google Scholar 

  26. Gao S, Jiang G, Li B, Han P (2018) Effects of high-concentration salt solutions and pH on swelling behavior of physically and chemically cross-linked hybrid hydrophobic association hydrogels with good mechanical strength. Soft Mater 16:249–264

    Article  CAS  Google Scholar 

  27. Pan H, Fan D, Zhu C, Duan Z, Fu R, Li X (2019) Preparation of physically crosslinked PVA/HLC/SA hydrogel and exploration of its effects on full-thickness skin defects. Int J Polym Mater Polym Biomater 68:1048–1057

    Article  CAS  Google Scholar 

  28. Schneider LA, Korber A, Grabbe S, Dissemond J (2007) Influence of pH on wound-healing: a new perspective for wound-therapy? Arch Dermatol Res 298:413–420

    Article  PubMed  Google Scholar 

  29. Ono S, Imai R, Ida Y, Shibata D, Komiya T, Matsumura H (2015) Increased wound pH as an indicator of local wound infection in second degree burns. Burns 41:820–824

    Article  PubMed  Google Scholar 

  30. Gethin G (2007) The significance of surface pH in chronic wounds. Wounds UK 3:52

    Google Scholar 

  31. Safari J, Zarnegar Z (2014) Advanced drug delivery systems: nanotechnology of health design A review. J Saudi Chem Soc 18:85–99

    Article  CAS  Google Scholar 

  32. Godoy-Alvarez FK, González-Torres M, Giraldo-Gomez DM, Sánchez-Sánchez R, Pérez-Díaz MA, González-Del Carmen M, Figueroa-González G, Reyes-Hernández OD, Sharifi-Rad J, Cortés H (2021) Synthesis by gamma irradiation of hyaluronic acid-polyvinyl alcohol hydrogel for biomedical applications. Cell Mole Bio 67 (1):58–63

  33. Khorasani MT, Joorabloo A, Adeli H, Mansoori-Moghadam Z, Moghaddam A (2019) Design and optimization of process parameters of polyvinyl (alcohol)/chitosan/nano zinc oxide hydrogels as wound healing materials. Carbohydr Polym 207:542–554

    Article  CAS  PubMed  Google Scholar 

  34. Glass S, Kühnert M, Abel B, Schulze A (2019) Controlled electron-beam synthesis of transparent hydrogels for drug delivery applications. Polymers 11:501

    Article  CAS  PubMed Central  Google Scholar 

  35. Loh EYX, Mohamad N, Fauzi MB, Ng MH, Ng SF, Amin MCIM (2018) Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing. Sci Rep 8:2875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hsieh HT, Chang HM, Lin WJ, Hsu YT, Mai FD (2017) Poly-methyl methacrylate/polyvinyl alcohol copolymer agents applied on diabetic wound dressing. Sci Rep 7:9531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Salimi-Kenari H, Mollaie F, Dashtimoghadam E, Imani M, Nyström B (2018) Effects of chain length of the cross-linking agent on rheological and swelling characteristics of dextran hydrogels. Carbohydr Polym 181:141–149

    Article  CAS  PubMed  Google Scholar 

  38. Mahinroosta M, Farsangi ZJ, Allahverdi A, Shakoori Z (2018) Hydrogels as intelligent materials: a brief review of synthesis, properties and applications. Mater Today Chem 8:42–55

    Article  CAS  Google Scholar 

  39. Eke G, Mangir N, Hasirci N, MacNeil S, Hasirci V (2017) Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials 129:188–198

    Article  CAS  PubMed  Google Scholar 

  40. Oliveira R, Rouzé R, Quilty B, Alves G, Soares G, Thiré R, McGuinness G (2014) Mechanical properties and in vitro characterization of polyvinyl alcohol-nano-silver hydrogel wound dressings. Interface Focus 4:20130049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rahmati M, Milan PB, Samadikuchaksaraei A, Goodarzi V, Saeb MR, Kargozar S, Kaplan DL, Mozafari M (2017) Ionically crosslinked thermoresponsive chitosan hydrogels formed in situ: a conceptual basis for deeper understanding. Macromol Mater Eng 302:1700227

    Article  CAS  Google Scholar 

  42. Swaroop K, Somashekarappa H (2018) In vitro biocompatibility and antibacterial activity of gamma ray crosslinked ZnO/PVA hydrogel nanocomposites. Mater Today Proc 5:21314–21321

    Article  CAS  Google Scholar 

  43. Abdeen ZI, El Farargy AF, Negm NA (2018) Nanocomposite framework of chitosan/polyvinyl alcohol/ZnO: preparation, characterization, swelling and antimicrobial evaluation. J Mol Liq 250:335–343

    Article  CAS  Google Scholar 

  44. El-Mohdy HA (2013) Radiation synthesis of nanosilver/poly vinyl alcohol/cellulose acetate/gelatin hydrogels for wound dressing. J Polym Res 20:177

    Article  CAS  Google Scholar 

  45. Zhang L, Wang Z, Xu C, Li Y, Gao J, Wang W, Liu Y (2011) High strength graphene oxide/polyvinyl alcohol composite hydrogels. J Mater Chem 21:10399–10406

    Article  CAS  Google Scholar 

  46. Mallakpour S, Darvishzadeh M (2018) Nanocomposite materials based on poly (vinyl chloride) and bovine serum albumin modified ZnO through ultrasonic irradiation as a green technique: optical, thermal, mechanical and morphological properties. Ultrason Sonochem 41:85–99

    Article  CAS  PubMed  Google Scholar 

  47. Zaid M, Hafiz M, Matori KA, Abdul Aziz SH, Zakaria A, Ghazali M, Sabri M (2012) Effect of ZnO on the physical properties and optical band gap of soda lime silicate glass. Int J Mol Sci 13:7550–7558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Singh P, Kumar A, Kaushal A, Kaur D, Pandey A, Goyal R (2008) In situ high temperature XRD studies of ZnO nanopowder prepared via cost effective ultrasonic mist chemical vapour deposition. Bull Mater Sci 31:573–577

    Article  CAS  Google Scholar 

  49. Kanade K, Kale B, Aiyer R, Das B (2006) Effect of solvents on the synthesis of nano-size zinc oxide and its properties. Mater Res Bull 41:590–600

    Article  CAS  Google Scholar 

  50. Khozemy EE, Nasef SM, Mahmoud GA (2018) Synthesis and characterization of antimicrobial nanocomposite hydrogel based on wheat flour and poly (vinyl alcohol) using γ-irradiation. Adv Polym Technol 37:3252–3261

    Article  CAS  Google Scholar 

  51. Razzak MT, Darwis D (2001) Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing. Radiat Phys Chem 62:107–113

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ghaffari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arab, M., Jallab, M., Ghaffari, M. et al. Synthesis, rheological characterization, and antibacterial activity of polyvinyl alcohol (PVA)/ zinc oxide nanoparticles wound dressing, achieved under electron beam irradiation. Iran Polym J 30, 1019–1028 (2021). https://doi.org/10.1007/s13726-021-00952-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00952-7

Keywords

Navigation