Skip to main content
Log in

A Mixed Self: The Role of Symbiosis in Development

  • Original Paper
  • Published:
Biological Theory Aims and scope Submit manuscript

Abstract

Since the 1950s, the common view of development has been internalist: development is seen as the result of the unfolding of potentialities already present in the egg cell. In this article, I show that this view is incorrect because of the crucial influence of the environment on development. I focus on a fascinating example, that of the role played by symbioses in development, especially bacterial symbioses, a phenomenon found in virtually all organisms (plants, invertebrates, and vertebrates). I claim that we must consequently modify our conception of the boundaries of the developing entity, and I show how immunology can help us in accomplishing this task. I conclude that the developing entity encompasses many elements traditionally seen as “foreign,” while I reject the idea that there is no possible distinction between the organism and its environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abe T, Bignell DE, Higashi M (eds) (2000) Termites: evolution, sociality, symbiosis, ecology. Kluwer Academic, Dordrecht/Norwell

    Google Scholar 

  • Billingham RE, Brent L, Medawar PB (1953) Actively acquired tolerance of foreign cells. Nature 172:603–606

    Article  Google Scholar 

  • Bischoff V, Vignal C, Duvic B, Boneca IG, Hoffmann JA, Royet J (2006) Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathog 2(2):e14:0139–0147

    Google Scholar 

  • Bjorkholm B, Bok CM, Lundin A, Rafter J, Hibberd ML, Pettersson S (2009) Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS One 4(9):e6958

    Article  Google Scholar 

  • Bouskra D, Brézillon C, Bérard M, Werts C, Varona R, Boneca IG, Eberl G (2008) Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456:507–512

    Article  Google Scholar 

  • Bright M, Bulgheresi S (2010) A complex journey: transmission of microbial symbionts. Nat Rev Microbiol 8:218–230

    Article  Google Scholar 

  • Brownlie JC, Johnson KN (2009) Symbiont-mediated protection in insect hosts. Trends Microbiol 17(8):348–354

    Article  Google Scholar 

  • Bry L, Falk PG, Midtvedt T, Gorgon JI (1996) A model of host-microbial interactions in an open mammalian ecosystem. Science 273:1380–1383

    Article  Google Scholar 

  • Burnet FM (1969) Self and notself. Cambridge University Press, Cambridge

    Google Scholar 

  • Crespi M, Frugier F (2008) De novo organ formation from differentiated cells: root nodule organogenesis. Sci Signal 1:re11

    Article  Google Scholar 

  • Davidson SK, Stahl DA (2008) Selective recruitment of bacteria during embryogenesis of an earthworm. ISME J 2:510–518

    Article  Google Scholar 

  • Dedeine F et al (2001) Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc Natl Acad Sci USA 98(11):6247—6252

    Google Scholar 

  • Eberl G (2005) Inducible lymphoid tissues in the adult gut: recapitulation of a fetal developmental pathway? Nat Rev Immunol 5:413–420

    Article  Google Scholar 

  • Eberl G (2007) From induced to programmed lymphoid tissues: the long road to preempt pathogens. Trends Immunol 28(10):423–428

    Article  Google Scholar 

  • Eberl G (2010) A new vision of immunity: homeostasis of the superorganism. Mucosal Immunol 3(5):450–460

    Article  Google Scholar 

  • Eberl G, Lochner M (2009) The development of intestinal lymphoid tissues at the interface of self and microbiota. Mucosal Immunol 2(6):478–485

    Article  Google Scholar 

  • Garrett WS, Gordon JI, Glimcher LH (2010) Homeostasis and inflammation in the intestine. Cell 140(6):859–870

    Article  Google Scholar 

  • Gilbert SF (2001) Ecological developmental biology: biology meets the real world. Dev Biol 233:1–12

    Article  Google Scholar 

  • Gilbert SF (2002) The genome in its ecological context. Ann N Y Acad Sci 981:202–218

    Article  Google Scholar 

  • Gilbert SF (2005) Mechanisms for the environmental regulation of gene expression: ecological aspects of animal development. J Biosci 30:101–110

    Article  Google Scholar 

  • Gilbert SF (2010) Developmental biology, 9th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Gilbert SF (2011) Expanding the temporal dimensions of developmental biology: the role of environmental agents in establishing adult-onset phenotypes. Biol Theory 6(1). doi:10.1007/s13752-011-0008-0

  • Gilbert SF, Epel D (2009) Ecological developmental biology: integrating epigenetics, medicine and evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Gil-Turnes MS, Hay ME, Fenical W (1989) Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 246:116–118

    Article  Google Scholar 

  • Griffiths PE (2009) In what sense does “nothing in biology make sense except in the light of evolution”? Acta Biotheor 57:11–32

    Article  Google Scholar 

  • Griffiths P, Gray R (2001) Darwinism and developmental systems. In: Oyama S, Griffiths P, Gray R (eds) Cycles of contingency. MIT Press, Cambridge, pp 195–218

    Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471

    Article  Google Scholar 

  • Heijtz RD, Wang S, Anuard F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 108:3047–3052

    Article  Google Scholar 

  • Hill DA, Arthis D (2010) Intestinal bacteria and the regulation of immune cell homeostasis. Annu Rev Immunol 28:623–667

    Article  Google Scholar 

  • Hooper LV (2004) Bacterial contributions to mammalian gut development. Trends Microbiol 12(3):129–134

    Article  Google Scholar 

  • Hooper LV (2005) Resident bacteria as inductive signals in mammalian gut development. In: McFall-Ngai MJ, Henderson B, Ruby EG (eds) The influence of cooperative bacteria on animal host biology. Cambridge University Press, Cambridge, pp 249–264

    Google Scholar 

  • Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118

    Article  Google Scholar 

  • Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884

    Article  Google Scholar 

  • Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329:212–215

    Article  Google Scholar 

  • Kereszt A, Mergaert P, Maroti G, Kondorosi E (2011) Innate immunity effectors and virulence factors in symbiosis. Curr Opin Microbiol 14:76–81

    Article  Google Scholar 

  • Kondorosi E, Kondorosi A (2004) Endoreduplication and activation of the anaphase-promoting complex during symbiotic cell development. FEBS Lett 567:152–157

    Article  Google Scholar 

  • Koropatnick TA, Engle JT, Apicella MA, Stabb EV, Goldman WE, McFall-Ngai MJ (2004) Microbial factor-mediated development in a host-bacterial mutualism. Science 306:1186–1188

    Article  Google Scholar 

  • Kremer N, Charif D, Henri H, Bataille M, Prévost G, Kraaijeveld K, Vavre F (2009) A new case of Wolbachia dependence in the genus Asobara: evidence for parthenogenesis induction in Asobara japonica. Heredity 103(3):248–256

    Article  Google Scholar 

  • Lanning DK, Rhee K-J, Knight KL (2005) Intestinal bacteria and development of the B-lymphocyte repertoire. Trends Immunol 26(8):419–425

    Article  Google Scholar 

  • Lee YK, Mazmanian SK (2010) Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330:1768–1773

    Article  Google Scholar 

  • Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743

    Article  Google Scholar 

  • Lewontin R (2000) The triple helix: gene, organism and environment. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Love AC (2008) Explaining the ontogeny of form: philosophical issues. In: Sarkar S, Plutynski A (eds) A companion to the philosophy of biology. Blackwell, Malden, pp 223–247

    Google Scholar 

  • Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118

    Article  Google Scholar 

  • Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453:620–625

    Article  Google Scholar 

  • McFall-Ngai M (2002) Unseen forces: the influence of bacteria on animal development. Dev Biol 242:1–14

    Article  Google Scholar 

  • McFall-Ngai MJ, Ruby EG (1991) Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science 254:1491–1494

    Article  Google Scholar 

  • McFall-Ngai M, Henderson B, Ruby EG (eds) (2005) The influence of cooperative bacteria on animal host biology. Cambridge University Press, Cambridge

    Google Scholar 

  • McFall-Ngai M, Nyholm SV, Castillo MG (2010) The role of the immune system in the initiation and persistence of the Euprymna scolopes-Vibrio fischeri symbiosis. Semin Immunol 22(1):48–53

    Article  Google Scholar 

  • Nyholm SV, Stabb EV, Ruby EG, McFall-Ngai MJ (2000) Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. Proc Natl Acad Sci USA 97:10231–10235

    Article  Google Scholar 

  • Nyholm SV, Stewart JJ, Ruby EG, McFall-Ngai MJ (2009) Recognition between symbiotic Vibrio fischeri and the hemocytes of Euprymna scolopes. Environ Microbiol 11(2):483–493

    Article  Google Scholar 

  • O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Reports 7(7):688–693

    Article  Google Scholar 

  • O’Neill SL, Hoffmann AA, Werren JH (1997) Influential passengers: inherited microorganisms and arthropod reproduction. Oxford University Press, New York

    Google Scholar 

  • Oyama S ([1985] 2000) The ontogeny of information. Duke University Press, Durham

  • Oyama S, Griffiths P, Gray R (eds) (2001) Cycles of contingency: developmental systems and evolution. MIT Press, Cambridge, MA

    Google Scholar 

  • Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5(7):1556–1573

    Article  Google Scholar 

  • Pivato B, Offre P, Marchelli S, Barbonaglia B, Mougel C, Lemanceau P, Berta G (2009) Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza 19:81–90

    Article  Google Scholar 

  • Pradeu T (2009) Les Limites du Soi: Immunologie et identité biologique. Montreal: Presses Universitaires de Montreal. English translation: The limits of the self: immunology and biological identity (in press 2012). Oxford University Press, New York

  • Pradeu T (2010a) What is an organism? An immunological answer. Hist Philos Life Sci 32(2–3):247–267

    Google Scholar 

  • Pradeu T (2010b) The organism in developmental systems theory. Biol Theory 5:216–222

    Article  Google Scholar 

  • Pradeu T, Alizon S (in preparation) Ecologizing immunology

  • Pradeu T, Carosella ED (2006a) The self model and the conception of biological identity in immunology. Biol Philos 21(2):235–252

    Article  Google Scholar 

  • Pradeu T, Carosella ED (2006b) On the definition of a criterion of immunogenicity. Proc Natl Acad Sci USA 103(47):17858–17861

    Article  Google Scholar 

  • Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323

    Article  Google Scholar 

  • Ryu JH, Kim SH, Lee HY, Bai JY, Nam YD, Bae JW, Lee DG, Shin SC, Ha EM, Lee (2008) Innate immune homeostasis by the homeobox gene Caudal and commensal-gut mutualism in Drosophila. Science 319:777–782

    Article  Google Scholar 

  • Ryu JH, Ha EM, Lee WJ (2010) Innate immunity and gut-microbe mutualism in Drosophila. Dev Comp Immunol 34(4):369–376

    Article  Google Scholar 

  • Salzman NH (2011) Microbiota-immune system interaction: an uneasy alliance. Curr Opin Microbiol 14:99–105

    Article  Google Scholar 

  • Sawa S, Cherrier M, Lochner M, Satoh-Takayama N, Fehling HJ, Langa F, Di Santo JP, Eberl G (2010) Lineage relationship analysis of RORγt+. Science 330:665–669

    Article  Google Scholar 

  • Schulenburg H, Kurtz J, Moret Y, Siva-Jothy MT (2009) Ecological immunology. Philos Trans R Soc B 364:3–14

    Article  Google Scholar 

  • Smith C, McCoy KD, Macpherson AJ (2007) Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol 19:59–69

    Article  Google Scholar 

  • Stappenbeck TS, Hooper LV, Gordon JI (2002) Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci USA 99:15451–15455

    Article  Google Scholar 

  • Stougaerd J (2000) Regulators and regulation of legume root nodule development. Plant Physiol 124:531–539

    Article  Google Scholar 

  • Tong D, Rozas NS, Oakley TH, Mitchell J, Colley NJ, McFall-Ngai MJ (2009) Evidence for light perception in a bioluminescent organ. Proc Natl Acad Sci USA 106:9836–9841

    Article  Google Scholar 

  • Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810

    Article  Google Scholar 

  • Van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, Farkas A, Mikulass K, Nagy A, Tiricz H, Satiat-Jeunemaître B, Alunni B, Bourge M, Kucho K, Abe M, Kereszt A, Maroti G, Uchiumi T, Kondorosi E, Mergaert P (2010) Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327:1122–1126

    Article  Google Scholar 

  • Waddington CH (1959) Canalization of development and genetic assimilation of an acquired character. Nature 183:1654–1655

    Article  Google Scholar 

  • Wang D, Griffitts J, Starker C, Fedorova E, Limpens E, Ivanov S, Bisseling T, Long S (2010) A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science 327:1126–1129

    Article  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, New York

    Google Scholar 

  • Wilks M (2007) Bacteria and early human development. Early Hum Dev 83:165–170

    Article  Google Scholar 

  • Xu J, Gordon JI (2003) Honor thy symbionts. Proc Natl Acad Sci USA 100:10452–10459

    Article  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735

    Article  Google Scholar 

Download references

Acknowledgments

I want to thank Lucie Laplane, Michel Morange, Antonine Nicoglou, Frédérique Théry, and Michel Vervoort for excellent and fruitful interactions within the “Boundaries of Development” research group at the IHPST. I also want to thank Gérard Eberl, Scott Gilbert, and Peter Godfrey-Smith for useful discussions, as well as Lucie Laplane, Michel Morange, Michel Vervoort, Francesca Merlin, and Hannah-Louise Clark for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Pradeu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradeu, T. A Mixed Self: The Role of Symbiosis in Development. Biol Theory 6, 80–88 (2011). https://doi.org/10.1007/s13752-011-0011-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13752-011-0011-5

Keywords

Navigation