Skip to main content
Log in

Optimizing Decellularization Strategies for the Efficient Production of Whole Rat Kidney Scaffolds

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

BACKGROUND:

Renal dysfunction remains a global issue, with chronic kidney disease being the 18th most leading cause of death, worldwide. The increased demands in kidney transplants, led the scientific society to seek alternative strategies, utilizing mostly the tissue engineering approaches. Unlike to perfusion decellularization of kidneys, we proposed alternative decellularization strategies to obtain acellular kidney scaffolds. The aim of this study was the evaluation of two different decellularization approaches for producing kidney bioscaffolds.

METHODS:

Rat kidneys from Wistar rats, were submitted to decellularization, followed two different strategies. The decellularization solutions used in both approaches were the same and involved the use of 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate and sodium dodecyl sulfate buffers for 12 h each, followed by incubation in a serum medium. Both approaches involved 3 decellularization cycles. Histological analysis, biochemical and DNA quantification were performed. Cytotoxicity assay and repopulation of acellular kidneys were also applied.

RESULTS:

Histological, biochemical and DNA quantification confirmed that the 2nd approach had the best outcome regarding the kidney composition and cell elimination. Acellular kidneys from both approaches were successfully recellularized.

CONCLUSION:

Based on the above data, the production of kidney scaffolds with the proposed cost- effective decellularization approaches, was efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Carney EF. The impact of chronic kidney disease on global health. Nat Rev Nephrol. 2020;16:251.

  2. Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet. 2017;389:1238–52.

    Article  PubMed  Google Scholar 

  3. Levey AS, Eckardt KU, Dorman NM, Christiansen SL, Hoorn EJ, Ingelfinger JR, et al. Nomenclature for kidney function and disease: report of a kidney disease: improving global outcomes (KDIGO) consensus conference. Kidney Int. 2020;97:1117–29.

    Article  PubMed  Google Scholar 

  4. Goldfarb-Rumyantzev AS, Rout P. Characteristics of elderly patients with diabetes and end-stage renal disease. Semin Dial. 2010;23:185–90.

    Article  PubMed  Google Scholar 

  5. London GM. Arterial stiffness in chronic kidney disease and end-stage renal disease. Blood Purif. 2018;45:154–8.

    Article  PubMed  Google Scholar 

  6. Kaysen GA, Eiserich JP. Characteristics and effects of inflammation in end-stage renal disease. Semin Dial. 2003;16:438–46.

    Article  PubMed  Google Scholar 

  7. Lu Y, Stamm C, Nobre D, Pruijm M, Teta D, Cherpillod A, et al. Changing trends in end-stage renal disease patients with diabetes. Swiss Med Wkly. 2017;147:w14458.

    PubMed  Google Scholar 

  8. Jiang Y, Fine JP, Mottl AK. Competing risk of death with end-stage renal disease in diabetic kidney disease. Adv Chronic Kidney Dis. 2018;25:133–40.

    Article  PubMed  Google Scholar 

  9. Jha V, Modi GK. Getting to know the enemy better-the global burden of chronic kidney disease. Kidney Int. 2018;94:462–4.

    Article  PubMed  Google Scholar 

  10. Xie Y, Bowe B, Mokdad AH, Xian H, Yan Y, Li T, et al. Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. Kidney Int. 2018;94:567–81.

    Article  PubMed  Google Scholar 

  11. Bowe B, Xie Y, Li T, Mokdad AH, Xian H, Yan Y, et al. Changes in the US Burden of chronic kidney disease from 2002 to 2016: an analysis of the global burden of disease study. JAMA Netw Open. 2018;1:e184412.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Luyckx VA, Tonelli M, Stanifer JW. The global burden of kidney disease and the sustainable development goals. Bull World Health Organ. 2018;96:414-422D.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lobbedez T, Lecouf A, Abbadie O, Ficheux M, de Ligny BH, Ryckelynck JP. Peritoneal dialysis and renal transplantation. Contrib Nephrol. 2009;163:250–6.

    Article  PubMed  Google Scholar 

  14. Snyder JJ, Kasiske BL, Gilbertson DT, Collins AJ. A comparison of transplant outcomes in peritoneal and hemodialysis patients. Kidney Int. 2002;62:1423–30.

    Article  PubMed  Google Scholar 

  15. Molnar MZ, Mehrotra R, Duong U, Bunnapradist S, Lukowsky LR, Krishnan M, et al. Dialysis modality and outcomes in kidney transplant recipients. Clin J Am Soc Nephrol. 2012;7:332–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Honeycutt AA, Segel JE, Zhuo X, Hoerger TJ, Imai K, Williams D. Medical costs of CKD in the Medicare population. J Am Soc Nephrol. 2013;24:1478–83.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Himmelfarb J, Vanholder R, Mehrotra R, Tonelli M. The current and future landscape of dialysis. Nat Rev Nephrol. 2020;16:573–85.

    Article  PubMed  PubMed Central  Google Scholar 

  18. De Vecchi AF, Dratwa M, Wiedemann ME. Healthcare systems and end-stage renal disease (ESRD) therapies–an international review: costs and reimbursement/funding of ESRD therapies. Nephrol Dial Transplant. 1999;14 Suppl 6:31–41.

    Article  PubMed  Google Scholar 

  19. Yang F, Lau T, Luo N. Cost-effectiveness of haemodialysis and peritoneal dialysis for patients with end-stage renal disease in Singapore. Nephrology (Carlton). 2016;21:669–77.

    Article  Google Scholar 

  20. Fu R, Sekercioglu N, Berta W, Coyte PC. Cost-effectiveness of deceased-donor renal transplant versus dialysis to treat end-stage renal disease: a systematic review. Transplant Direct. 2020;6:e522.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Heldal K, Midtvedt K, Lønning K, Iversen T, Hernæs KH, Tsarpali V, et al. Kidney transplantation: an attractive and cost-effective alternative for older patients? A cost-utility study. Clin Kidney J. 2019;12:888–94.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Augustine J. Kidney transplant: new opportunities and challenges. Cleve Clin J Med. 2018;85:138–44.

    Article  PubMed  Google Scholar 

  23. Hernández D, Alonso-Titos J, Armas-Padrón AM, Lopez V, Cabello M, Sola E, et al. Waiting list and kidney transplant vascular risk: an ongoing unmet concern. Kidney Blood Press Res. 2020;45:1–27.

    Article  PubMed  Google Scholar 

  24. Veroux M, Corona D, Veroux P. Kidney transplantation: future challenges. Minerva Chir. 2009;64:75–100.

    CAS  PubMed  Google Scholar 

  25. National kidney Foundation. Organ Donation and Transplantation Statistics. https://www.kidney.org/news/newsroom/factsheets/Organ-Donation-and-Transplantation-Stats. 2020.

  26. Tapias LF, Ott HC. Decellularized scaffolds as a platform for bioengineered organs. Curr Opin Organ Transplant. 2014;19:145–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng. 2013;60:691–9.

    Article  PubMed  Google Scholar 

  28. Zhang X, Zhang Y. Tissue engineering applications of three-dimensional bioprinting. Cell Biochem Biophys. 2015;72:777–82.

    Article  CAS  PubMed  Google Scholar 

  29. Ali M, PR AK, Lee SJ, Jackson JD. Three-dimensional bioprinting for organ bioengineering: promise and pitfalls. Curr Opin Organ Transplant. 2018;23:649–656.

  30. Kačarević ŽP, Rider PM, Alkildani S, Retnasingh S, Smeets R, Jung O, et al. An introduction to 3D bioprinting: possibilities, challenges and future aspects. Materials (Basel). 2018;11:2199.

    Article  CAS  Google Scholar 

  31. Bishop ES, Mostafa S, Pakvasa M, Luu HH, Lee MJ, Wolf JM, et al. 3-D bioprinting technologies in tissue engineering and regenerative medicine: current and future trends. Genes Dis. 2017;4:185–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27:3675–83.

    CAS  PubMed  Google Scholar 

  33. Gilbert TW. Strategies for tissue and organ decellularization. J Cell Biochem. 2012;113:2217–22.

    Article  CAS  PubMed  Google Scholar 

  34. Wallace MA. Anatomy and physiology of the kidney. AORN J. 1998;68:819–20.

    Article  Google Scholar 

  35. Glassock RJ, Rule AD. Aging and the kidneys: anatomy, physiology and consequences for defining chronic kidney disease. Nephron. 2016;134:25–9.

    Article  PubMed  Google Scholar 

  36. Figliuzzi M, Bonandrini B, Remuzzi A. Decellularized kidney matrix as functional material for whole organ tissue engineering. J Appl Biomater Funct Mater. 2017;15:e326–33.

    CAS  PubMed  Google Scholar 

  37. Abolbashari M, Agcaoili SM, Lee MK, Ko IK, Aboushwareb T, Jackson JD, et al. Repopulation of porcine kidney scaffold using porcine primary renal cells. Acta Biomater. 2016;29:52–61.

    Article  CAS  PubMed  Google Scholar 

  38. Guan Y, Liu S, Liu Y, Sun C, Cheng G, Luan Y, et al. Porcine kidneys as a source of ECM scaffold for kidney regeneration. Mater Sci Eng C Mater Biol Appl. 2015;56:451–6.

    Article  CAS  PubMed  Google Scholar 

  39. Sullivan DC, Mirmalek-Sani SH, Deegan DB, Baptista PM, Aboushwareb T, Atala A, et al. Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials. 2012;33:7756–64.

    Article  CAS  PubMed  Google Scholar 

  40. Wang Y, Bao J, Wu Q, Zhou Y, Li Y, Wu X, et al. Method for perfusion decellularization of porcine whole liver and kidney for use as a scaffold for clinical-scale bioengineering engrafts. Xenotransplantation. 2015;22:48–61.

    Article  CAS  PubMed  Google Scholar 

  41. Liu RF, Gao JS, Yang YF, Zeng WX. Preparation of rat whole-kidney acellular matrix via peristaltic pump. Urol J. 2015;12:2457–61.

    PubMed  Google Scholar 

  42. Kajbafzadeh AM, Khorramirouz R, Nabavizadeh B, Ladi Seyedian SS, Akbarzadeh A, Heidari R, et al. Whole organ sheep kidney tissue engineering and in vivo transplantation: Effects of perfusion-based decellularization on vascular integrity. Mater Sci Eng C Mater Biol Appl. 2019;98:392–400.

    Article  CAS  PubMed  Google Scholar 

  43. Destefani AC, Sirtoli GM, Nogueira BV. Advances in the Knowledge about Kidney Decellularization and Repopulation. Front Bioeng Biotechnol. 2017;1:34.

    Article  Google Scholar 

  44. Chani B, Puri V, Sobti RC, Jha V, Puri S. Decellularized scaffold of cryopreserved rat kidney retains its recellularization potential. PLoS One. 2017;7:e0173040.

    Article  CAS  Google Scholar 

  45. Katsimpoulas M, Morticelli L, Gontika I, Kouvaka A, Mallis P, Dipresa D, et al. Biocompatibility and immunogenicity of decellularized allogeneic aorta in the orthotopic rat model. Tissue Eng Part A. 2019;25:399–415.

    Article  CAS  PubMed  Google Scholar 

  46. Mallis P, Gontika I, Poulogiannopoulos T, Zoidakis J, Vlahou A, Michalopoulos E, et al. Evaluation of decellularization in umbilical cord artery. Transplant Proc. 2014;46:3232–9.

    Article  CAS  PubMed  Google Scholar 

  47. Dimou Z, Michalopoulos E, Katsimpoulas M, Dimitroulis D, Kouraklis G, Stavropoulos-Giokas C, et al. Evaluation of a decellularization protocol for the development of a decellularized tracheal scaffold. Anticancer Res. 2019;39:145–50.

    Article  CAS  PubMed  Google Scholar 

  48. Mallis P, Chachlaki P, Katsimpoulas M, Stavropoulos-Giokas C, Michalopoulos E. Optimization of decellularization procedure in rat esophagus for possible development of a tissue engineered construct. Bioengineering (Basel). 2018;6:3.

    Article  CAS  Google Scholar 

  49. Mallis P, Papapanagiotou A, Katsimpoulas M, Kostakis A, Siasos G, Kassi E, et al. Efficient differentiation of vascular smooth muscle cells from Wharton’s Jelly mesenchymal stromal cells using human platelet lysate: A potential cell source for small blood vessel engineering. World J Stem Cells. 2020;12:203–21.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rustad KC, Sorkin M, Levi B, Longaker MT, Gurtner GC. Strategies for organ level tissue engineering. Organogenesis. 2010;6:151–7.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Welman T, Michel S, Segaren N, Shanmugarajah K. Bioengineering for organ transplantation: progress and challenges. Bioengineered. 2015;6:257–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arenas-Herrera JE, Ko IK, Atala A, Yoo JJ. Decellularization for whole organ bioengineering. Biomed Mater. 2013;8:014106.

    Article  CAS  PubMed  Google Scholar 

  53. Abecassis M, Bartlett ST, Collins AJ, Davis CL, Delmonico FL, Friedewald JJ, et al. Kidney transplantation as primary therapy for end-stage renal disease: a National Kidney Foundation/Kidney Disease Outcomes Quality Initiative (NKF/KDOQITM) conference. Clin J Am Soc Nephrol. 2008;3:471–80.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Linden EA, Cano J, Coritsidis GN. Kidney transplantation in undocumented immigrants with ESRD: a policy whose time has come? Am J Kidney Dis. 2012;60:354–9.

  55. Husain SA, King KL, Pastan S, Patzer RE, Cohen DJ, Radhakrishnan J, et al. Association between declined offers of deceased donor kidney allograft and outcomes in kidney transplant candidates. JAMA Netw Open. 2019;2:e1910312.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wainright JL, Klassen DK, Kucheryavaya AY, Stewart DE. Delays in prior living kidney donors receiving priority on the transplant waiting list. Clin J Am Soc Nephrol. 2016;11:2047–52.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Madariaga ML, Ott HC. Bioengineering kidneys for transplantation. Semin Nephrol. 2014;34:384–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rogers J, Katari R, Gifford S, Tamburrini R, Edgar L, Voigt MR, et al. Kidney transplantation, bioengineering and regeneration: an originally immunology-based discipline destined to transition towards ad hoc organ manufacturing and repair. Expert Rev Clin Immunol. 2016;12:169–82.

    Article  CAS  PubMed  Google Scholar 

  59. Peloso A, Katari R, Murphy SV, Zambon JP, DeFrancesco A, Farney AC, et al. Prospect for kidney bioengineering: shortcomings of the status quo. Expert Opin Biol Ther. 2015;15:547–58.

    Article  CAS  PubMed  Google Scholar 

  60. Lin YQ, Wang LR, Pan LL, Wang H, Zhu GQ, Liu WY, et al. Kidney bioengineering in regenerative medicine: An emerging therapy for kidney disease. Cytotherapy. 2016;18:186–97.

    Article  CAS  PubMed  Google Scholar 

  61. Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev. 2018;132:296–332.

    Article  CAS  PubMed  Google Scholar 

  62. Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34:422–34.

    Article  CAS  PubMed  Google Scholar 

  63. Bonandrini B, Figliuzzi M, Papadimou E, Morigi M, Perico N, Casiraghi F, et al. Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells. Tissue Eng Part A. 2014;20:1486–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Leuning DG, Witjas FMR, Maanaoui M, de Graaf AMA, Lievers E, Geuens T, et al. Vascular bioengineering of scaffolds derived from human discarded transplant kidneys using human pluripotent stem cell-derived endothelium. Am J Transplant. 2019;19:1328–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fedecostante M, Onciu OG, Westphal KGC, Masereeuw R. Towards a bioengineered kidney: recellularization strategies for decellularized native kidney scaffolds. Int J Artif Organs. 2017;9:150–8.

    Article  CAS  Google Scholar 

  66. Caralt M, Uzarski JS, Iacob S, Obergfell KP, Berg N, Bijonowski BM, et al. Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation. Am J Transplant. 2015;15:64–75.

    Article  CAS  PubMed  Google Scholar 

  67. Mallis P, Sokolis DP, Makridakis M, Zoidakis J, Velentzas AD, Katsimpoulas M, et al. Insights into biomechanical and proteomic characteristics of small diameter vascular grafts utilizing the human umbilical artery. Biomedicines. 2020;8:280.

    Article  CAS  PubMed Central  Google Scholar 

  68. Hwang J, San BH, Turner NJ, White LJ, Faulk DM, Badylak SF, et al. Molecular assessment of collagen denaturation in decellularized tissues using a collagen hybridizing peptide. Acta Biomater. 2017;53:268–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mallis P, Katsimpoulas M, Kostakis A, Dipresa D, Korossis S, Papapanagiotou A, et al. Vitrified human umbilical arteries as potential grafts for vascular tissue engineering. Tissue Eng Regen Med. 2020;17:285–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang Z, Wu W, Fang X, Lu M, Wu H, Gao C, et al. Sox9 promotes renal tubular epithelial-mesenchymal transition and extracellular matrix aggregation via the PI3K/AKT signaling pathway. Mol Med Rep. 2020;22:4017–30.

    PubMed  Google Scholar 

  71. White LR, Blanchette JB, Ren L, Awn A, Trpkov K, Muruve DA. The characterization of alpha5-integrin expression on tubular epithelium during renal injury. Am J Physiol Renal Physiol. 2007;292:F567–76.

    Article  CAS  PubMed  Google Scholar 

  72. Khamchun S, Sueksakit K, Chaiyarit S, Thongboonkerd V. Modulatory effects of fibronectin on calcium oxalate crystallization, growth, aggregation, adhesion on renal tubular cells, and invasion through extracellular matrix. J Biol Inorg Chem. 2019;24:235–46.

    Article  CAS  PubMed  Google Scholar 

  73. Van Vliet A, Baelde HJ, Vleming LJ, de Heer E, Bruijn JA. Distribution of fibronectin isoforms in human renal disease. J Pathol. 2001;193:256–62.

    Article  PubMed  Google Scholar 

  74. Luo J, Korossis SA, Wilshaw SP, Jennings LM, Fisher J, Ingham E. Development and characterization of acellular porcine pulmonary valve scaffolds for tissue engineering. Tissue Eng Part A. 2014;20:2963–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gontika I, Katsimpoulas M, Antoniou E, Kostakis A, Stavropoulos-Giokas C, Michalopoulos E. Decellularized human umbilical artery used as nerve conduit. Bioengineering (Basel). 2018;5:100.

    Article  CAS  Google Scholar 

  76. Jafari M, Mehrnejad F, Rahimi F, Asghari SM. The molecular basis of the sodium dodecyl sulfate effect on human ubiquitin structure: a molecular dynamics simulation study. Sci Rep. 2018;8:2150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Bobis S, Jarocha D, Majka M. Mesenchymal stem cells: characteristics and clinical applications. Folia Histochem Cytobiol. 2006;44:215–30.

    CAS  PubMed  Google Scholar 

  78. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8:726–36.

    Article  CAS  PubMed  Google Scholar 

  79. Liu ZJ, Zhuge Y, Velazquez OC. Trafficking and differentiation of mesenchymal stem cells. J Cell Biochem. 2009;106:984–91.

    Article  CAS  PubMed  Google Scholar 

  80. Machado Cde V, Telles PD, Nascimento IL. Immunological characteristics of mesenchymal stem cells. Rev Bras Hematol Hemoter. 2013;35:62–7.

    Article  PubMed  Google Scholar 

  81. Remuzzi A, Figliuzzi M, Bonandrini B, Silvani S, Azzollini N, Nossa R, et al. Experimental evaluation of kidney regeneration by organ scaffold recellularization. Sci Rep. 2017;7:43502.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ross EA, Abrahamson DR, St John P, Clapp WL, Williams MJ, Terada N, et al. Mouse stem cells seeded into decellularized rat kidney scaffolds endothelialize and remodel basement membranes. Organogenesis. 2012;8:49–55.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Fu RH, Wang YC, Liu SP, Shih TR, Lin HL, Chen YM, et al. Decellularization and recellularization technologies in tissue engineering. Cell Transplant. 2014;23:621–30.

    Article  PubMed  Google Scholar 

  84. Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng. 2011;13:27–53.

    Article  CAS  PubMed  Google Scholar 

  85. O’Brien FJ, Harley BA, Waller MA, Yannas IV, Gibson LJ, Prendergast PJ. The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technol Health Care. 2007;15:3–17.

    Article  PubMed  Google Scholar 

  86. O’Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials. 2005;26:433–41.

    Article  CAS  PubMed  Google Scholar 

  87. Vissers CAB, Harvestine JN, Leach JK. Pore size regulates mesenchymal stem cell response to Bioglass-loaded composite scaffolds. J Mater Chem B. 2015;3:8650–8.

    Article  CAS  PubMed  Google Scholar 

  88. Hussein KH, Saleh T, Ahmed E, Kwak HH, Park KM, Yang SR, et al. Biocompatibility and hemocompatibility of efficiently decellularized whole porcine kidney for tissue engineering. J Biomed Mater Res A. 2018;106:2034–47.

    Article  CAS  PubMed  Google Scholar 

  89. Kobayashi T, Cooper DK. Anti-Gal, alpha-Gal epitopes, and xenotransplantation. Subcell Biochem. 1999;32:229–57.

    CAS  PubMed  Google Scholar 

  90. GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020;395:709–33.

    Article  Google Scholar 

  91. Yin L, Du G, Zhang B, Zhang H, Yin R, Zhang W, et al. Efficient drug screening and nephrotoxicity assessment on co-culture microfluidic kidney chip. Sci Rep. 2020;10:6568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fedecostante M, Westphal KGC, Buono MF, Sanchez Romero N, Wilmer MJ, Kerkering J, et al. Recellularized native kidney scaffolds as a novel tool in nephrotoxicity screening. Drug Metab Dispos. 2018;46:1338–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

None

Author information

Authors and Affiliations

Authors

Contributions

Substantial Contribution to the conception and design of the study: Panagiotis Mallis (MSc, PhD), Michalis Katsimpoulas (D.V.M., PhD) and Efstathios Michalopoulos (MSc, PhD). Acquisition, interpretation and analysis of data: Panagiotis Mallis, Charalampos Oikonomidis (BSc) and Zetta Dimou (MSc, PhD). Drafting the article: Panagiotis Mallis, Charalampos Oikonomidis. Revisiting it critically for the important intellectual content: Panagiotis Mallis, Efstathios Michalopoulos, Catherine Stavropoulos Giokas (Μ.D., PhD) and Michalis Katsimpoulas. Final Approval of the version to be published: Catherine Stavropoulos Giokas, Efstathios Michalopoulos and Michalis Katsimpoulas.

Corresponding author

Correspondence to Panagiotis Mallis.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest for this study.

Ethical Statement

The study protocol involved the harvest of kidneys from Wistar Rats, weighing 300–350 gr. All care and handling of the animals were provided according to the Guide for the Care and Use of Laboratory Animals of BRFAA, conformed to the Directive 2010/63/EU of the European Parliament, and has been approved by the Bioethics Committee of BRFAA (ref 25–2019). The WJ-MSCs used in the current research study were provided by the Hellenic Cord Blood Bank (HCBB) located at the Biomedical Research Foundation Academy of Athens (BRFAA). All human umbilical cords, used for the WJ-MSCs, were accompanied by informed consent and signed by the mothers before the delivery. In addition all human umbilical cords were derived from male donors. Also, the informed consent was in accordance with the ethical standards of the Greek National Ethical Committee and has been accepted by the Institution’s ethical board (Ref 2578/32).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1791 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallis, P., Oikonomidis, C., Dimou, Z. et al. Optimizing Decellularization Strategies for the Efficient Production of Whole Rat Kidney Scaffolds. Tissue Eng Regen Med 18, 623–640 (2021). https://doi.org/10.1007/s13770-021-00339-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-021-00339-y

Keywords

Navigation