Skip to main content

Advertisement

Log in

Management of a Mycobacterium immunogenum infection of a peritoneal dialysis catheter site

  • Case Report
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Mycobacterium immunogenum is a member of the rapidly growing non-tuberculous mycobacteria and is a relatively new species identified within this group. An 81-year-old immune-competent male was diagnosed with M. immunogenum infection of his peritoneal dialysis catheter exit site and surrounding soft tissue. To our knowledge, this is the first reported case of M. immunogenum infection of a peritoneal catheter. Treatment included catheter removal, local surgical debridement, and combination antimicrobial therapy. Herein, we review literature describing antibiotic management of M. immunogenum, an organism for which optimal therapy is not defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wilson RW, Steingrube VA, Böttger EC, et al. Mycobacterium immunogenum sp. nov., a novel species related to Mycobacterium abscessus and associated with clinical disease, pseudo-outbreaks and contaminated metalworking fluids: an international cooperative study on mycobacterial taxonomy. Int J Syst Evol Microbiol. 2001;51:1751–64. https://doi.org/10.1099/00207713-51-5-1751.

    Article  CAS  PubMed  Google Scholar 

  2. Adékambi T, Reynaud-Gaubert M, Greub G, et al. Amoebal coculture of “Mycobacterium massiliense” sp. nov. from the sputum of a patient with hemoptoic pneumonia. J Clin Microbiol. 2004;42:5493–501. https://doi.org/10.1128/JCM.42.12.5493-5501.2004.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175:367–416. https://doi.org/10.1164/rccm.200604-571ST.

    Article  CAS  PubMed  Google Scholar 

  4. Griffith DE. Therapy of nontuberculous mycobacterial disease. Curr Opin Infect Dis. 2007;20:198. https://doi.org/10.1097/QCO.0b013e328055d9a2.

    Article  PubMed  Google Scholar 

  5. Rodriguez-Coste MA, Chirca I, Steed LL, Salgado CD. Epidemiology of rapidly growing mycobacteria bloodstream infections. Am J Med Sci. 2016;351:253–8. https://doi.org/10.1016/j.amjms.2015.12.012.

    Article  PubMed  Google Scholar 

  6. Brown-Elliott BA, Hanson K, Vasireddy S, et al. Absence of a functional erm gene in isolates of Mycobacterium immunogenum and the Mycobacterium mucogenicum group, based on in vitro clarithromycin susceptibility. J Clin Microbiol. 2015;53:875–8. https://doi.org/10.1128/JCM.02936-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brown-Elliott BA, Wallace RJ. In vitro susceptibility testing of tedizolid against nontuberculous mycobacteria. J Clin Microbiol. 2017;55:1747–54. https://doi.org/10.1128/JCM.00274-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tse K-C, Lui S-L, Cheng VC-C, Yip TP-S, Lo WK. A cluster of rapidly growing mycobacterial peritoneal dialysis catheter exit-site infections. Am J Kidney Dis. 2007;50:e1–5. https://doi.org/10.1053/j.ajkd.2007.04.017.

    Article  PubMed  Google Scholar 

  9. Mooren VHJF, Bleeker MWP, van Ingen J, Hermans MHA, Wever PC. Disseminated Mycobacterium abscessus infection in a peritoneal dialysis patient. IDCases. 2017;9:6–7. https://doi.org/10.1016/j.idcr.2017.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rhodes G, Fluri A, Ruefenacht A, Gerber M, Pickup R. Implementation of a quantitative real-time PCR assay for the detection of Mycobacterium immunogenum in metalworking fluids. J Occup Environ Hyg. 2011;8:478–83. https://doi.org/10.1080/15459624.2011.590737.

    Article  CAS  PubMed  Google Scholar 

  11. Ahmed RA, Shandro C, Tyrrell GJ, Sharma MK, Miedzinski LJ. Safety of injecting insulin through clothes: a case of Mycobacterium immunogenum cutaneous infection and review of the literature. Clin Diabetes. 2013;31:76–8. https://doi.org/10.2337/diaclin.31.2.76.

    Article  Google Scholar 

  12. Sampaio JLM, Junior DN, de Freitas D, et al. An outbreak of keratitis caused by Mycobacterium immunogenum. J Clin Microbiol. 2006;44:3201–7. https://doi.org/10.1128/JCM.00656-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Greninger AL, Langelier C, Cunningham G, et al. Two rapidly growing mycobacterial species isolated from a brain abscess: first whole-genome sequences of Mycobacterium immunogenum and Mycobacterium llatzerense. J Clin Microbiol. 2015;53:2374–7. https://doi.org/10.1128/JCM.00402-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Biggs HM, Chudgar SM, Pfeiffer CD, Rice KR, Zaas AK, Wolfe CR. Disseminated Mycobacterium immunogenum infection presenting with septic shock and skin lesions in a renal transplant recipient. Transpl Infect Dis. 2012;14:415–21. https://doi.org/10.1111/j.1399-3062.2012.00730.x.

    Article  CAS  PubMed  Google Scholar 

  15. Del-Castillo M, Palmero D, Lopez B, et al. Mesotherapy-associated outbreak caused by Mycobacterium immunogenum. Emerg Infect Dis. 2009;15:357–9.

    Article  PubMed  Google Scholar 

  16. Garcia-Zamora E, Sanz-Robles H, Elosua-Gonzalez M, Rodriguez-Vasquez X, Lopez-Estebaranz JL. Cutaneous infection due to Mycobacterium immunogenum: an European case report and review of the literature. Dermatol Online J. 2017;23:1–4.

    Google Scholar 

  17. Mitchell CB, Isenstein A, Burkhart CN, Groben P, Morrell DS. Infection with Mycobacterium immunogenum following a tattoo. J Am Acad Dermatol. 2011;64:e70–1. https://doi.org/10.1016/j.jaad.2009.12.037.

    Article  PubMed  Google Scholar 

  18. Loots MAM, de Jong MD, van Soolingen D, Wetsteyn JCFM, Faber WR. Chronic leg ulcer caused by Mycobacterium immunogenum. J Travel Med. 2005;12:347–9.

    Article  PubMed  Google Scholar 

  19. Shedd AD, Edhegard KD, Lugo-Somolinos A. Mycobacterium immunogenum skin infections: two different presentations. Int J Dermatol. 2010;49:941–4. https://doi.org/10.1111/j.1365-4632.2009.04363.x.

    Article  PubMed  Google Scholar 

  20. Tam PYI, Kline S, Ward G, Ferrieri P. Non-tuberculous mycobacterial infection in hospitalized children: a case series. Epidemiol Infect. 2015;143:3173–81. https://doi.org/10.1017/S0950268815000333.

    Article  Google Scholar 

  21. Guo Q, Chu H, Ye M, et al. The clarithromycin susceptibility genotype affects the treatment outcome of patients with mycobacterium abscessus lung disease. Antimicrob Agents Chemother. 2018;62:e02360–17. https://doi.org/10.1128/AAC.02360-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Koh W-J, Jeon K, Lee NY, et al. Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am J Respir Crit Care Med. 2011;183:405–10. https://doi.org/10.1164/rccm.201003-0395OC.

    Article  PubMed  Google Scholar 

  23. Hanson KE, Slechta ES, Muir H, Barker AP. Rapid molecular detection of inducible macrolide resistance in Mycobacterium chelonae and M. abscessus strains: a replacement for 14-day susceptibility testing? J Clin Microbiol. 2014;52:1705–7. https://doi.org/10.1128/JCM.03464-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Choi G-E, Shin SJ, Won C-J, et al. Macrolide treatment for Mycobacterium abscessus and Mycobacterium massiliense infection and inducible resistance. Am J Respir Crit Care Med. 2012;186:917–25. https://doi.org/10.1164/rccm.201111-2005OC.

    Article  CAS  PubMed  Google Scholar 

  25. Amaral EP, Conceição EL, Costa DL, et al. N-Acetyl-cysteine exhibits potent anti-mycobacterial activity in addition to its known anti-oxidative functions. BMC Microbiol. 2016;16:251. https://doi.org/10.1186/s12866-016-0872-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kranzer K, Elamin WF, Cox H, Seddon JA, Ford N, Drobniewski F. A systematic review and meta-analysis of the efficacy and safety of N-acetylcysteine in preventing aminoglycoside-induced ototoxicity: implications for the treatment of multidrug-resistant TB. Thorax. 2015;70:1070–7. https://doi.org/10.1136/thoraxjnl-2015-207245.

    Article  PubMed  Google Scholar 

  27. Cowman S, Burns K, Benson S, Wilson R, Loebinger MR. The antimicrobial susceptibility of non-tuberculous mycobacteria. J Infect. 2016;72:324–31. https://doi.org/10.1016/j.jinf.2015.12.007.

    Article  CAS  PubMed  Google Scholar 

  28. Hatakeyama S, Ohama Y, Okazaki M, Nukui Y, Moriya K. Antimicrobial susceptibility testing of rapidly growing mycobacteria isolated in Japan. BMC Infect Dis. 2017;17:197. https://doi.org/10.1186/s12879-017-2298-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ferro BE, Srivastava S, Deshpande D, et al. Tigecycline is highly efficacious against Mycobacterium abscessus pulmonary disease. Antimicrob Agents Chemother. 2016;60:2895–900. https://doi.org/10.1128/AAC.03112-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martiniano SL, Wagner BD, Levin A, Nick JA, Sagel SD, Daley CL. Safety and effectiveness of clofazimine for primary and refractory nontuberculous mycobacterial infection. Chest. 2017;152:800–9. https://doi.org/10.1016/j.chest.2017.04.175.

    Article  PubMed  Google Scholar 

  31. Ferro BE, Meletiadis J, Wattenberg M, et al. Clofazimine prevents the regrowth of Mycobacterium abscessus and Mycobacterium avium type strains exposed to amikacin and clarithromycin. Antimicrob Agents Chemother. 2016;60:1097–105. https://doi.org/10.1128/AAC.02615-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Etminan M, Westerberg BD, Kozak FK, Guo MY, Carleton BC. Risk of sensorineural hearing loss with macrolide antibiotics: a nested case-control study. Laryngoscope. 2017;127:229–32. https://doi.org/10.1002/lary.26190.

    Article  CAS  PubMed  Google Scholar 

  33. Mick P, Westerberg BD. Sensorineural hearing loss as a probable serious adverse drug reaction associated with low-dose oral azithromycin. J Otolaryngol. 2007;36:257–63.

    Article  PubMed  Google Scholar 

  34. Ress BD, Gross EM. Irreversible sensorineural hearing loss as a result of azithromycin ototoxicity. A case report. Ann Otol Rhinol Laryngol. 2000;109:435–7. https://doi.org/10.1177/000348940010900416.

    Article  CAS  PubMed  Google Scholar 

  35. Winthrop KL, Ku JH, Marras TK, et al. The tolerability of linezolid in the treatment of nontuberculous mycobacterial disease. Eur Respir J. 2015;45:1177–9. https://doi.org/10.1183/09031936.00169114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ramsey TD, Lau TT, Ensom MH. Serotonergic and adrenergic drug interactions associated with linezolid: a critical review and practical management approach. Ann Pharmacother. 2013;47:543–60. https://doi.org/10.1345/aph.1R604.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Shenoy.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shenoy, A., El-Nahal, W., Walker, M. et al. Management of a Mycobacterium immunogenum infection of a peritoneal dialysis catheter site. Infection 46, 875–880 (2018). https://doi.org/10.1007/s15010-018-1199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-018-1199-0

Keywords

Navigation