Skip to main content
Log in

The effect of the scatter correction obtained using single scatter simulations with CT- and MR-based attenuation maps for 18F-FDG brain PET

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Attenuation correction (AC) and scatter correction (SC) are essential steps for accurate PET quantification in positron emission tomography (PET)/computed tomography (CT) and PET/magnetic resonance (MR) imaging. SC with a single scatter simulation (SSS) algorithm is usually performed by employing an attenuation map using CT and MR data for AC. The purpose of this study was to evaluate the effect of SC using a SSS algorithm with CT- and MR-based attenuation maps in phantom and volunteer studies for 18F-FDG brain PET. We investigated the effect of the SC on two MR-based attenuation maps, which included a four-segmentation Dixon (soft tissue, fat, lung, and air) and a five-segmentation Model, which is Dixon plus bone, and we compared those maps with a standard CT-based attenuation map. In the phantom study, the difference in (%) recovery coefficients before and after SC for a CT-based attenuation correction (CTAC) and a MR-based attenuation correction (MRAC) were 20.36 and 21.01, respectively. The difference in the scatter fractions on the sinogram was about 2% between the CTAC and the MRAC (Dixon). In the volunteer study, the scatter fractions were 24.08 for the CT, 23.09 for the Dixon, and 23.11 for the Model. The bias in the scatter ratio image, after calculating the before and after SCs from the PET images, between the CTAC and the two MRACs was less than 1% (% MAE = 0.43 for CT-Dixon and 0.39 for CT-Model). A voxel-wise analysis of the scatter ratio before and after the SC from PET images showed no significant differences between the CTAC and the two MRACs (p > 0.05). We found that despite the different attenuation maps, the difference in the effects of the SC between the two MR and the CT attenuation maps was minimal. This implies that the SC obtained using the SSS algorithm was rarely affected by the attenuation map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Kjae, Cancer Imaging 14, 32 (2014)

    Article  Google Scholar 

  2. E.C. Ehman, G.B. Johnson, G.E. Villanueva-Meyer, S. Cha, A.P. Leynes, P.E.Z. Larson, T.A. Hope, J. Magn. Reson. Imaging 46, 1247 (2017)

    Article  Google Scholar 

  3. Z. Chen, S.D. Jamadar, S. Li, F. Sforazzini, J. Baran, N. Ferris, N.J. Shah, G.F. Egan, Hum. Brain Mapp. 39, 5126 (2018)

    Article  Google Scholar 

  4. P. Zanzonico, Semin. Nucl. Med. 34, 87 (2004)

    Article  Google Scholar 

  5. N. Burgos et al., 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (2014)

  6. H. Zaidi, B. Hasegawa, J. Nucl. Med. 44, 291 (2003)

    Google Scholar 

  7. H. Zaidi, M.L. Montandon, PET Clin. 2, 219 (2007)

    Article  Google Scholar 

  8. A. Martinez-Möller, S.G. Nekolla, Med. Phys. 22, 299 (2012)

    Google Scholar 

  9. M.E. Lindemann, F. Nensa, H.H. Quick, PLoS ONE 14, 3 (2019)

    Google Scholar 

  10. M. Hofmann, B. Pichler, B. Schölkopf, T. Beyer, Eur. J. Nucl. Med. Mol. Imaging 36, 93 (2009)

    Article  Google Scholar 

  11. A. Martinez-Möller, M. Souvatzoglou, G. Delso, R.A. Bundschuh, C. Chefdhotel, S.I. Ziegler, N. Navab, M. Schwaiger, S.G. Nekolla, J. Nucl. Med. 50, 520 (2009)

    Article  Google Scholar 

  12. S.H. Keller et al., 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (2012)

  13. S. Roy, W.T. Wang, A. Carass, J.L. Prince, J.A. Butman, D.L. Pham, J. Nucl. Med. 55, 2071 (2014)

    Article  Google Scholar 

  14. D.H. Paulus, H.H. Quick, C. Geppert, M. Fenchel, Y. Zhan, G. Hermosillo, D. Faul, F. Boada, K.P. Friedman, T. Koesters, J. Nucl. Med. 56, 1061 (2015)

    Article  Google Scholar 

  15. S.H. Keller, S. Holm, A.E. Hansen, B. Sattler, F. Anderson, T.L. Klausen, L. Hojgaard, A. Kjaer, T. Beyer, Magn. Reson. Mater. Phys. 26, 173 (2013)

    Article  Google Scholar 

  16. F.L. Andersen, C.N. Ladefoged, T. Beyer, S.H. Keller, A.E. Hansen, L. Hojgaard, A. Kjaer, I. Law, S. Holm, Neuroimage 84, 206 (2014)

    Article  Google Scholar 

  17. J.H. Kim, J.S. Lee, I.C. Song, D.S. Lee, J. Nucl. Med. 53, 1878 (2012)

    Article  Google Scholar 

  18. Y. Chen, M. Juttukonda, Y. Su, T. Benzinger, B.G. Rubin, Y.Z. Lee, W. Lin, D. Shen, D. Lalush, H. An, Radiology 275, 562 (2015)

    Article  Google Scholar 

  19. D. Izquierdo-Garcia, A.E. Hansen, S. Forster, D. Benoit, S. Schachoff, S. Furst, K.T. Chen, D.B. Chonde, C. Catana, J. Nucl. Med. 55, 1825 (2014)

    Article  Google Scholar 

  20. G. Delso, K. Zeimpekis, M. Carl, F. Wiesinger, M. Hullner, P. Veit-Haibach, EJNMMI. Phys. 1, 7 (2014)

    Article  Google Scholar 

  21. G. Delso, F. Wiesinger, L.I. Sacolick, S.S. Kaushik, D.D. Shanbhag, M. Hullner, P. Veit-Haibach, J. Nucl. Med. 56, 417 (2015)

    Article  Google Scholar 

  22. T. Koesters, K.P. Friedman, M. Fenchel, Y. Zhan, G. Hermosillo, J. Babb, I.O. Jelescu, D. Faul, F.E. Boada, T.M. Shepherd, J. Nucl. Med. 57, 918 (2016)

    Article  Google Scholar 

  23. A.M. Franceschi et al., World J. Nucl. Med. 17, 188 (2018)

    Article  Google Scholar 

  24. G. Wagenknecht, H.J. Kaiser, F.M. Mottaghy, H. Herzog, Magn. Reson. Mater. Phys. 26, 99 (2013)

    Article  Google Scholar 

  25. M. Hofmann, F. Steinke, V. Scheel, G. Charpiat, J. Farquhar, P. Aschoff, M. Brady, B. Scholkopf, B.J. Pichler, J. Nucl. Med. 49, 1875 (2008)

    Article  Google Scholar 

  26. V. Keereman, Y. Fierens, T. Broux, Y.D. Deene, M. Lonneux, S. Vandenberghe, J. Nucl. Med. 51, 812 (2010)

    Article  Google Scholar 

  27. I.B. Malone, R.E. Ansorge, G.B. Williams, P.J. Nestor, T.A. Carpenter, T.D. Fryer, J. Nucl. Med. 52, 1142 (2011)

    Article  Google Scholar 

  28. Y. Berker et al., J. Nucl. Med. 53, 796 (2012)

    Article  Google Scholar 

  29. J. Teuho, A. Torrado-Carvajal, H. Herzog, U. Anazodo, R. Klen, H. Lida, M. Teras, Front. Phys. 7, 243 (2020)

    Article  Google Scholar 

  30. J. Teuho, Ph.D. dissertation, University of Turku, Turku, Finland (2018)

  31. J.M. Ollinger, Phys. Med. Biol. 41, 153 (1996)

    Article  Google Scholar 

  32. C.C. Watson, D. Newport, M.E. Casey, A. Dekemp, R.S. Beanlands, M. Schmand, IEEE. Trans. Nucl. Sci. 44, 90 (1997)

    Article  ADS  Google Scholar 

  33. C.C. Watson, IEEE. Trans. Nucl. Sci. 54, 1679 (2007)

    Article  ADS  Google Scholar 

  34. H. Herzog, C. Lerche, PET Clin. 11, 95 (2016)

    Article  Google Scholar 

  35. C.N. Ladefoged et al., Neuroimage 147, 346 (2017)

    Article  Google Scholar 

  36. H. Inki et al., IEEE. Trans. Radiat. Plasma Med. Sci. 3, 327 (2019)

    Article  Google Scholar 

  37. U.C. Anazodo, J.D. Thiessen, T. Ssali, J. Mandel, M. Gunther, J. Butler, W. Pavlosky, F.S. Prato, R.T. Thompson, K.S. Lawrence, Front. Neurosci. 8, 434 (2015)

    Article  Google Scholar 

  38. C. Catana, A. Kouwe, T. Benner, C.J. Michel, M. Hamm, M. Fenchel, B. Fischl, B. Rosen, M. Schmand, A.G. Sorensen, J. Nucl. Med. 51, 1431 (2010)

    Article  Google Scholar 

  39. S.D. Wollenweber, S. Ambwani, G. Delso, A.H.R. Lonn, R. Mullick, F. Wiesinger, Z. Piti, A. Tari, G. Novak, M. Fidrich, IEEE. Trans. Nucl. Sci. 60, 3383 (2013)

    Article  ADS  Google Scholar 

  40. J. Nuyts, P. Dupont, S. Stroobants, R. Benninck, L. Mortelmans, P. Suetens, IEEE. Trans. Med Imaging 18, 393 (1999)

    Article  Google Scholar 

  41. S. Ziegler, B.W. Jakoby, H. Braun, D.H. Paulus, H.H. Quick, EJNMMI. Phys. 2, 18 (2015)

    Article  Google Scholar 

  42. J. Teuho, V. Saunavaara, T. Tolvanen, T. Tuokkola, A. Karlsson, J. Tuisku, M. Teras, J. Nucl. Med. 58, 1691 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Foundation of Korea University and approved by the Institutional Review Board of Korea University (KUIRB-2020-0187-01). The authors would like to thank Dr. Lee and researcher H.D.H. in the Department of Nuclear Medicine, Seoul National University for their assistance with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyungjin Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, S.H., Kang, H.K., Lee, J.A. et al. The effect of the scatter correction obtained using single scatter simulations with CT- and MR-based attenuation maps for 18F-FDG brain PET . J. Korean Phys. Soc. 79, 95–104 (2021). https://doi.org/10.1007/s40042-021-00186-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00186-z

Keywords

Navigation