Skip to main content
Log in

Multi-dimensional electrostatic plasma simulations using the particle-in-cell method for the low-temperature plasmas for materials processing

  • Review - Fluids, Plasma and Phenomenology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

With the increasing requirement for the analysis of nonlinear and transient behaviors in plasma systems, the demand for particle-in-cell (PIC) simulations is increasing. However, most plasma simulations have utilized fluid models because of the high computational cost of the PIC simulation. This article introduces the most recent advances in the electrostatic particle-in-cell simulations of low-temperature plasmas for materials processing. The parallelization in multi-dimensional geometry using heterogeneous computing and the method to treat curved boundaries are explained to improve the PIC simulation. Test examples of two-dimensional hollow cathode discharges and three-dimensional magnetron sputtering systems are presented to investigate the kinetic effects of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.M. Dawson, Rev. Mod. Phys. 55, 403 (1983)

    Article  ADS  Google Scholar 

  2. C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985)

    Google Scholar 

  3. R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles (McGraw-Hill, New York, 1981)

    MATH  Google Scholar 

  4. J.P. Verboncoeur, M.V. Alves, V. Vahedi, C.K. Birdsall, J. Comput. Phys. 104, 321 (1993)

    Article  ADS  Google Scholar 

  5. V. Vahedi, M. Surendra, Comput. Phys. Commun. 87, 179 (1995)

    Article  ADS  Google Scholar 

  6. B.D. Martino, S. Briguglio, G. Vlad, P. Sguazzero, Parallel Comput. 27, 295 (2001)

    Article  Google Scholar 

  7. J.P. Verboncoeur, Plasma Phys. Control. Fusion 47, A231 (2005)

    Article  ADS  Google Scholar 

  8. M.Y. Hur, J.S. Kim, I.C. Song, J.P. Verboncoeur, H.J. Lee, Plasma Res. Express 1, 015016 (2019)

    Article  ADS  Google Scholar 

  9. V.K. Decyk, T.V. Singh, Comp. Phys. Commun. 185, 708 (2014)

    Article  ADS  Google Scholar 

  10. R. Jambunathan, D.A. Levin, J. Comp. Phys. 373, 571 (2018)

    Article  ADS  Google Scholar 

  11. J.S. Kim, M.Y. Hur, C.H. Kim, H.J. Kim, H.J. Lee, J. Phys. D: Appl. Phys. 51, 104004 (2018)

    Article  ADS  Google Scholar 

  12. H.J. Kim, J.S. Kim, H.J. Lee, J. Appl. Phys. 126, 173301 (2019)

    Article  ADS  Google Scholar 

  13. J.S. Kim, M.Y. Hur, H.J. Kim, H.J. Lee, J. Appl. Phys. 126, 23301 (2019)

    Article  Google Scholar 

  14. C.H. Kim, H. Kim, G. Park, H.J. Lee, Plasma Sourc. Sci. Technol. 30, 065031 (2021)

    Article  ADS  Google Scholar 

  15. C.H. Kim, J.S. Kim, M.Y. Hur, Y. Sakiyama, H.J. Lee, Plasma Sourc. Sci. Technol. 30, 075005 (2021)

    Article  ADS  Google Scholar 

  16. Y.J. Kim, M.S. Lee, H.J. Lee, J. Korean Phys. Soc. 75, 909 (2019)

    Article  ADS  Google Scholar 

  17. M. Jiang, Y. Li, H. Wang, W. Ding, C. Liu, Plasma Sourc. Sci. Technol. 29, 015020 (2020)

    Article  ADS  Google Scholar 

  18. F. He, X. Zhao, S. He, J. Ouyang, Phys. Plasmas 17, 033510 (2010)

    Article  ADS  Google Scholar 

  19. Y.H. Jo, H.S. Park, M.Y. Hur, H.J. Lee, AIP Adv. 10, 125224 (2020)

    Article  ADS  Google Scholar 

  20. S. Celestin, Z. Bonaventura, B. Zeghondy, A. Bourdon, P. Segur, J. Phys. D: Appl. Phys. 42, 065203 (2009)

    Article  ADS  Google Scholar 

  21. T. Iseki, Vacuum 80, 662 (2006)

    Article  ADS  Google Scholar 

  22. NVIDIA Corporation, CUDA C++ Programming Guide, Ver. 11.5 (2021)

Download references

Acknowledgments

This work was supported by Samsung Electronics Company, Ltd., Memory Department, Etch Technology Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae June Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, Y.H., Cheon, C., Park, H. et al. Multi-dimensional electrostatic plasma simulations using the particle-in-cell method for the low-temperature plasmas for materials processing. J. Korean Phys. Soc. 80, 787–798 (2022). https://doi.org/10.1007/s40042-021-00375-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00375-w

Keywords

Navigation