Skip to main content
Log in

Optical characteristics of type-II ZnTe/ZnSe quantum dots for visible wavelength device applications

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The optical characteristics of type-II ZnTe/ZnSe pyramidal quantum dots (QDs) were theoretically studied as a function of structural parameters such as the band offset, strain, capping layer thickness, and QD thickness. The band bending effect due to the strain dominantly occurs in the QD and the capping layer regions. As a result, the valence band wave function is shifted to the left side of the barrier and the conduction-band wave function is also dominantly located on the left barrier side. The transition energies are redshifted with increasing pyramid base, which is mainly due to a decrease in the valence subband energy. On the other hand, the subband energy in the conduction-band is shown to be nearly independent of the pyramid base length, showing a characteristic of a type-II band structure. Also, the transition energy is found to be nearly independent of the capping layer thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructure (Wiley, New York, 1999)

    Google Scholar 

  2. J. Bang, J. Park, J.H. Lee, N. Won, J. Nam, J. Lim, B.Y. Chang, H.J. Lee, B. Chon, J. Shin, J.B. Park, J.H. Choi, K. Cho, S.M. Park, T. Joo, S. Kim, Chem. Mater. 22, 233–240 (2010)

    Article  Google Scholar 

  3. R. Najjar, R. André, L. Besombes, C. Bougerol, S. Tatarenko, H. Mariette, Mater. Sci. Eng B 165, 85–87 (2009)

    Article  Google Scholar 

  4. Q. Zhang, A. Shen, I.L. Kuskovsky, M.C. Tamargo, J. Appl. Phys. 110, 034302 (2011)

    Article  ADS  Google Scholar 

  5. N.T. Hien, T.T.K. Chi, N.D. Vinh, H.T. Van, L.D. Thanh, P.V. Do, V.P. Tuyen, N.X. Ca, J. Lumin. 217, 116822 (2020)

    Article  Google Scholar 

  6. N.J. Simi, A.E. Tom, R. Vinayakan, V. Ison, J. Nanopart. Res. 22, 135 (2020)

    Article  Google Scholar 

  7. S. Ren, M. Wang, X. Wang, G. Han, Y. Zhang, H. Zhao, A. Vomiero, Nanoscale 13, 3519 (2021)

    Article  Google Scholar 

  8. S.-H. Park, W.-P. Hong, Chin. Phys. Lett. 27, 098502 (2010)

    Article  Google Scholar 

  9. S.-H. Park, W.-P. Hong, J.-J. Kim, D. Ahn, Sol. Stat. Comm. 204, 61 (2015)

    Article  ADS  Google Scholar 

  10. A.J. Peter, C.W. Lee, Curr. Appl. Phys. 13, 390 (2013)

    Article  ADS  Google Scholar 

  11. P. Elangovan, A.J. Peter, C.K. Yoo, J. Comp. Theo. Nano. 10, 1532 (2013)

    Article  Google Scholar 

  12. T.B. Bahder, Phys. Rev. B 41, 11992 (1990)

    Article  ADS  Google Scholar 

  13. D. Ahn, S.-H. Park, Engineering Quantum Mechanics (John Wiley & Sons, New Jersey, 2011), p. 123

    Book  Google Scholar 

  14. K.H. Huebner, D.L. Dewhirst, D.E. Smith, T.G. Byrom, The Finite Element Method for Engineers, 4th edn. (Wiley, New York, 2001)

    Google Scholar 

  15. For example, see http://www.comsol.com/

  16. C.G. Van de Walle, Phys. Rev. B 39, 1871 (1989)

    Article  ADS  Google Scholar 

  17. O. Madelung, Semiconductors: Data Handbook (Springer, Berlin, 2004)

    Book  Google Scholar 

  18. J.T. Woo, S.H. Song, I. Lee, T.W. Kim, K.H. Yoo, H.S. Lee, H.L. Park, J. Appl. Phys. 102, 033521 (2007)

    Article  ADS  Google Scholar 

  19. Y. Wu, K. Ichino, Y. Kawakami, S. Fujita, Jpn. J. Appl. Phys. 31, 1737 (1992)

    Article  ADS  Google Scholar 

  20. D.C. Hutchings, B.S. Wherrett, Phys. Rev. B 50, 4622 (1994)

    Article  ADS  Google Scholar 

  21. R. de Paiva, R.A. Nogueira, C. de Oliveira, H.W. Leite Alves, J.L.A. Alves, L.M.R. Scolfaro, J.R. Leite, Braz. J. Phys. 32, 405 (2002)

    Article  ADS  Google Scholar 

  22. Y. Wu, IEEE J. Quan. Elec. 30, 1562 (1994)

    Article  ADS  Google Scholar 

  23. H. Mathieu, A. Chatt, J. Allegre, J.P. Faurie, Phys. Rev. B 41, 6082 (1990)

    Article  ADS  Google Scholar 

  24. T. Li, H.J. Lozykowski, J.L. Reno, Phys. Rev. B 46, 6961 (1992)

    Article  ADS  Google Scholar 

  25. L. Brey, N.E. Christensen, M. Cardona, Phys. Rev. B 36, 2638 (1987)

    Article  ADS  Google Scholar 

  26. J.R. Buschert, F.C. Peiris, N. Samarth, H. Luo, J.K. Furdyna, Phys. Rev. B 49, 4619 (1994)

    Article  ADS  Google Scholar 

  27. I.V. Kurilo, V.P. Alekhin, I.O. Rudyi, S.I. Bulychev, L.I. Osypyshin, Phys. Stat. Sol. (a) 163, 47 (1997)

    Article  ADS  Google Scholar 

  28. Y. Rajakarunanayake, R.H. Miles, G.Y. Wu, T.C. McGill, Phys. Rev. B 37, 10212 (1988)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a sabbatical research grant from Daegu Catholic University in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo-Pyo Hong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, WP., Park, SH. Optical characteristics of type-II ZnTe/ZnSe quantum dots for visible wavelength device applications. J. Korean Phys. Soc. 80, 1–4 (2022). https://doi.org/10.1007/s40042-021-00379-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00379-6

Keywords

Navigation