Skip to main content
Log in

Synthesis of metal boride nanoparticles by using thermal plasmas

  • Review - Fluids, Plasma and Phenomenology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Metal boride nanoparticles have very useful physical and chemical properties, such as high melting points, wear resistance, and chemical inertness, and they are receiving attention as functional materials such as a non-noble catalyst for water electrolysis. The synthesis of boride compounds, however, requires very high temperatures. Thermal plasmas can evaporate boron and metal raw materials in the high-temperature core region; then, the composite is produced in the form of a nanoparticle due to a steep temperature gradient in the tail region of the thermal plasma jet. Conventionally, a radio-frequency (RF) thermal plasma system is used to synthesize high purity nanoparticles, and the production of metal boride nanoparticles by using a triple- direct current (DC) thermal plasma system has been reported recently. The characteristics of metal boride nanoparticles, including the mean size and core–shell structure, are controlled by operating conditions such as the flow rate and the species of the plasma-forming gas. Research applications for the produced metal boride nanoparticles is developing in the fields of novel soft material for nuclear radiation shielding and water-splitting catalyst for hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reprinted with permission from Choi et al., Adv. Powder Technol. 25, 365 (2014). Copyright 2014 Elsevier B.V.

Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Lundstrom, Pure Appl. Chem. 57, 1383 (1985)

    Article  Google Scholar 

  2. J.P. Scheifers, Y. Zhang, B.P.T. Fokwa, Acc. Chem. Res. 50, 2317 (2017)

    Article  Google Scholar 

  3. A.K. Iyer, Y. Zhang, J.P. Scheifers, B.P.T. Fokwa, J. Solid State Chem. 270, 618 (2018)

    Article  ADS  Google Scholar 

  4. B. Bakhit et al., Acta Mater. 196, 677 (2020)

    Article  ADS  Google Scholar 

  5. A.N. Arpita-Aparajita et al., Mater. Res. Express 4, 096508 (2017)

    Article  ADS  Google Scholar 

  6. E. Wuchina et al., Electrochem. Soc. Interface 16, 30 (2007)

    Article  Google Scholar 

  7. C. Buzea, T. Yamashita, Supercond. Sci. Technol. 14, R115 (2001)

    Article  ADS  Google Scholar 

  8. R.W. Cumberland et al., J. Am. Chem. Soc. 127, 7264 (2005)

    Article  Google Scholar 

  9. S. Chiodo, H.J. Gotsis, N. Russo, E. Sicilia, Chem. Phys. Lett. 425, 311 (2006)

    Article  ADS  Google Scholar 

  10. X. Hao et al., Phy. Rev. B 74, 224112 (2006)

    Article  ADS  Google Scholar 

  11. S. Gupta, M.K. Patel, A. Miotello, N. Patel, Adv. Funct. Mater. 30, 1906481 (2020)

    Article  Google Scholar 

  12. H. Vrubel, X. Hu, Angew. Chemie Int. Ed. 51, 12703 (2012)

    Article  Google Scholar 

  13. S. Gupta, N. Patel, A. Miotello, D.C. Kothari, J. Power Sources 279, 620 (2015)

    Article  ADS  Google Scholar 

  14. H.R. Baumgartner, R.A. Steiger, J. Am. Ceram. Soc. 67, 207 (1984)

    Article  Google Scholar 

  15. K.S. Kim, T.H. Kim, J. Appl. Phys. 125, 070901 (2019)

    Article  ADS  Google Scholar 

  16. T.H. Kim et al., Appl. Sci. Converg. Technol. 29, 1 (2020)

    Article  Google Scholar 

  17. M.I. Boulos, IEEE Trans. Plasma Sci. 19, 1078 (1991)

    Article  ADS  Google Scholar 

  18. P. Fauchais, A. Vardelle, IEEE Trans. Plasma Sci. 25, 1258 (1997)

    Article  ADS  Google Scholar 

  19. J. Heberlein, A.B. Murphy, J. Phys. D. Appl. Phys. 41, 053001 (2008)

    Article  ADS  Google Scholar 

  20. E. Pfender, Plasma Chem. Plasma Process. 19, 1 (1999)

    Article  Google Scholar 

  21. M. Shigeta, T. Watanabe, H. Nishiyama, Thin Solid Films 457, 192 (2004)

    Article  ADS  Google Scholar 

  22. M. Shigeta, H. Nishiyama, J. Heat Transfer. 127, 1222 (2005)

    Article  Google Scholar 

  23. J.H. Oh et al., Curr. Appl. Phys. 31, 151 (2021)

    Article  ADS  Google Scholar 

  24. K.D. Kang, S.H. Hong, IEEE Trans. Plasma Sci. 24, 89 (1996)

    Article  ADS  Google Scholar 

  25. M.I. Boulos, P. Fauchais, E. Pfender, Thermal plasmas: fundamentals and applications (Plenum Press, New York and London, 1994)

    Book  Google Scholar 

  26. Z.P. Lu, E. Pfender, MRS Proc. 180, 857 (1990)

    Article  Google Scholar 

  27. J.M. Park, K.S. Kim, T.H. Hwang, S.H. Hong, IEEE Trans. Plasma Sci. 32, 479 (2004)

    Article  ADS  Google Scholar 

  28. Z.P. Lu et al., MRS Proc. 190, 77 (1990)

    Article  Google Scholar 

  29. Z.P. Lu et al., Plasma Chem. Plasma Process. 11, 387 (1991)

    Article  Google Scholar 

  30. M. Asmann, R.F. Cook, J.V. Heberlein, E. Pfender, J. Mater. Res. 16, 469 (2001)

    Article  ADS  Google Scholar 

  31. M. Kim et al., Chem. Eng. J. 395, 125148 (2020)

    Article  Google Scholar 

  32. T.H. Kim et al., IEEE Trans. Plasma Sci. 47, 1 (2019)

    Article  Google Scholar 

  33. M. Kim et al., J. Nanosci. Nanotechnol. 19, 6264 (2019)

    Article  Google Scholar 

  34. J.H. Oh et al., Ceram. Int. 46, 28792 (2020)

    Article  Google Scholar 

  35. Y. Cheng, T. Watanabe, J. Chem. Eng. Jpn. 44, 583 (2011)

    Article  Google Scholar 

  36. Y. Cheng, M. Shigeta, S. Choi, T. Watanabe, Chem. Eng. J. 183, 483 (2012)

    Article  Google Scholar 

  37. A.M. Keszler et al., Plasma Chem. Plasma Process. 37, 1491 (2017)

    Article  Google Scholar 

  38. S. Choi, J. Matsuo, Y. Cheng, T. Watanabe, J. Nanoparticle Res. 15, 1820 (2013)

    Article  ADS  Google Scholar 

  39. S. Choi, J. Matsuo, T. Watanabe, J. Phys. Conf. Ser. 441, 012030 (2013)

    Article  Google Scholar 

  40. Y. Cheng, S. Choi, T. Watanabe, J. Phys. Conf. Ser. 441, 112031 (2013)

    Article  Google Scholar 

  41. Y. Cheng, S. Choi, T. Watanabe, Powder Technol. 246, 210 (2013)

    Article  Google Scholar 

  42. S. Choi, L.D.S. Lapitan, Y. Cheng, T. Watanabe, Adv. Powder Technol. 25, 365 (2014)

    Article  Google Scholar 

  43. Y. Cheng, M. Tanaka, T. Watanabe, S.Y. Choi, M.S. Shin, K.H. Lee, J. Phys. Conf. Ser. 518, 012026 (2014)

    Article  Google Scholar 

  44. M. Shigeta, T. Watanabe, Thin Solid Films 515, 4217 (2007)

    Article  ADS  Google Scholar 

  45. T.H. Kim, S. Choi, D.W. Park, Nanomaterials 6, 38 (2016)

    Article  Google Scholar 

  46. S.H. Gwon et al., Sci. Rep. 8, 1852 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the 2021 scientific promotion program funded by Jeju National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sooseok Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, JH., Choi, S. & Kim, TH. Synthesis of metal boride nanoparticles by using thermal plasmas. J. Korean Phys. Soc. 80, 808–816 (2022). https://doi.org/10.1007/s40042-021-00385-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00385-8

Keywords

Navigation