Skip to main content
Log in

Coral-shaped tin oxide incorporated graphitic carbon nitride nanosheets as peroxidase mimic for sensitive colorimetric and fluorescence quenching based detection of hydrogen peroxide

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

The enhanced peroxidase-like catalytic activity of coral-shaped graphitic carbon nitride (GCN) incorporated with tin oxide (SnO2) is here reported and applied for the sensitive and selective colorimetric detection of hydrogen peroxide (H2O2). The SnO2/GCN catalyzed the oxidation of 3, 3′, 5, 5′-tetramethylbenzidine, and H2O2 which resulted in the appearance/change of color in the visible range. The results of peroxidase-like activity showed that the growth of SnO2 on GCN nanosheets improved structure, optical, and electronic properties considerably. SnO2/GCN-40% showed the best activity because of the optimal loading of SnO2, unique structural, electronic, optical, and electrical properties. The catalytic reaction of coral-shaped SnO2/GCN-40% followed the typical Michaelis–Menten equation, and the affinity of coral-shaped SnO2/GCN-40% to TMB and H2O2 was higher than that of horseradish peroxide. The present study showed a rapid, selective, and sensitive response toward the H2O2 bioassay in a linear range of 10 − 655 μM with a limit of detection of 0.3 μM (S/N ratio of 3). The study may provide a promising method of performance improvement for applications in catalysis, biosensors, and nanomaterial-engineering fields.

Graphical abstract

Scheme shows the interaction of tin oxide with graphitic carbon nitride which resulted in a coral-shaped structure shown in SEM image. It also shows the interaction of tin oxide and graphitic carbon nitride with H2O2 in the presence of TMB (3,3′, 5,5′-Tetramethylbenzidine) and as a consequence, TMB gets oxidized and ended up in change in color.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Teodoro, K.B.R., Migliorini, F.L., Christinelli, W.A., Correa, D.S.: Detection of hydrogen peroxide (H2O2) using a colorimetric sensor based on cellulose nanowhiskers and silver nanoparticles. Carbohydr. Polym. 212, 235–241 (2019)

    Article  CAS  PubMed  Google Scholar 

  2. Pang, S., Zhang, Y., Wu, C., Feng, S.: Fluorescent carbon dots sensor for highly sensitive detection of guanine. Sens. Actuators B Chem. 222, 857–863 (2016)

    Article  CAS  Google Scholar 

  3. Hong, J., Maguhn, J., Freitag, D., Kettrup, A.: Determination of H2O2 and organic peroxides by high-performance liquid chromatography with post-column UV irradiation, derivatization and fluorescence detection. Fresenius J. Anal. Chem. 361(2), 124–128 (1998)

    Article  CAS  Google Scholar 

  4. Klassen, N.V., Marchington, D., McGowan, H.C.E.: H2O2 Determination by the I3- method and by KMnO4 titration. J. Anal. Chem. 66(18), 2921–2925 (2002)

    Article  Google Scholar 

  5. Siddiqui, A.S., Ahmad, M.A., Nawaz, M.H., Hayat, A., Nasir, M.: Nitrogen-doped graphene oxide as a catalyst for the oxidation of Rhodamine B by hydrogen peroxide: application to a sensitive fluorometric assay for hydrogen peroxide. Microchim. Acta 187(1), 47 (2019)

    Article  Google Scholar 

  6. Pratsinis, A., Kelesidis, G.A., Zuercher, S., Krumeich, F., Bolisetty, S., Mezzenga, R., Leroux, J.C., Sotiriou, G.A.: Enzyme-mimetic antioxidant luminescent nanoparticles for highly sensitive hydrogen peroxide biosensing. ACS Nano 11(12), 12210–12218 (2017)

    Article  CAS  PubMed  Google Scholar 

  7. Haddad Irani-Nezhad, M., Hassanzadeh, J., Khataee, A., Orooji, Y.: A chemiluminescent method for the detection of H2O2 and glucose based on intrinsic peroxidase-like activity of WS2 quantum dots. Molecules 24(4), 689 (2019)

    Article  PubMed Central  Google Scholar 

  8. Lin, J.-R., Chu, C.-J., Venkatesan, P., Wu, S.P.: Zinc (II) and pyrophosphate selective fluorescence probe and its application to living cell imaging. Sens. Actuators B Chem. 207, 563–570 (2015)

    Article  CAS  Google Scholar 

  9. Wang, T., Zhu, H., Zhuo, J., Zhu, Z., Papakonstantinou, P., Lubarsky, G., Lin, J., Li, M.: Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal. Chem. 85(21), 10289–10295 (2013)

    Article  CAS  PubMed  Google Scholar 

  10. Tao, Y., Ju, E., Ren, J., Qu, X.: Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 27(6), 1097–1104 (2015)

    Article  CAS  PubMed  Google Scholar 

  11. Nasir, M., Nawaz, M.H., Latif, U., Yaqub, M., Hayat, A., Rahim, A.: An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim. Acta 184(2), 323–342 (2016)

    Article  Google Scholar 

  12. Nasir, M., Rauf, S., Muhammad, N., Hasnain Nawaz, M., Anwar Chaudhry, A., Hamza Malik, M., Ahmad Shahid, S., Hayat, A.: Biomimetic nitrogen doped titania nanoparticles as a colorimetric platform for hydrogen peroxide detection. J. Colloid Interface Sci. 505, 1147–1157 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. Liu, J., Wang, H., Antonietti, M.: Graphitic carbon nitride “reloaded”: emerging applications beyond (photo) catalysis. Chem. Soc. Rev. 45(8), 2308–2326 (2016)

    Article  CAS  PubMed  Google Scholar 

  14. Li, X.H., Chen, J.S., Wang, X., Sun, J., Antonietti, M.: Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons. J. Am. Chem. Soc. 133(21), 8074–8077 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. Ge, L., Han, C., Liu, J., Li, Y.: Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles. Appl. Catal. A Gen. 409–410, 215–222 (2011)

    Article  Google Scholar 

  16. Fu, J., Yu, J., Jiang, C., Cheng, B.: g-C3N4-Based heterostructured photocatalysts. Adv. Energy Mater. 8(3), 1701503 (2018)

    Article  Google Scholar 

  17. Patnaik, S., Martha, S., Parida, K.M.: An overview of the structural, textural and morphological modulations of g-C3N4 towards photocatalytic hydrogen production. RSC Adv. 6(52), 46929–46951 (2016)

    Article  CAS  Google Scholar 

  18. Ren, H., Yan, L., Liu, M., Wang, Y., Liu, X., Liu, C., Liu, K., Zeng, L., Liu, A.: Green tide biomass templated synthesis of molybdenum oxide nanorods supported on carbon as efficient nanozyme for sensitive glucose colorimetric assay. Sens. Actuators B Chem. 296, 126517 (2019)

    Article  CAS  Google Scholar 

  19. Ren, H., Liu, X., Yan, L., Cai, Y., Liu, C., Zeng, L., Liu, A.: Ocean green tide derived hierarchical porous carbon with bi-enzyme mimic activities and their application for sensitive colorimetric and fluorescent biosensing. Sens. Actuators B Chem. 312, 127979 (2020)

    Article  CAS  Google Scholar 

  20. Yan, L., Ren, H., Guo, Y., Wang, G., Liu, C., Wang, Y., Liu, X., Zeng, L., Liu, A.: Rock salt type NiO assembled on ordered mesoporous carbon as peroxidase mimetic for colorimetric assay of gallic acid. Talanta 201, 406–412 (2019)

    Article  CAS  PubMed  Google Scholar 

  21. Liu, X., Yan, L., Ren, H., Cai, Y., Liu, C., Zeng, L., Guo, J., Liu, A.: Facile synthesis of magnetic hierarchical flower-like Co3O4 spheres: Mechanism, excellent tetra-enzyme mimics and their colorimetric biosensing applications. Biosens. Bioelectron. 165, 112342 (2020)

    Article  CAS  PubMed  Google Scholar 

  22. Han, L., Zeng, L., Wei, M., Li, C.M., Liu, A.: A V2O3-ordered mesoporous carbon composite with novel peroxidase-like activity towards the glucose colorimetric assay. Nanoscale 7(27), 11678–11685 (2015)

    Article  CAS  PubMed  Google Scholar 

  23. Liu, P., Han, L., Wang, F., Li, X., Petrenko, V.A., Liu, A.: Sensitive colorimetric immunoassay of Vibrio parahaemolyticus based on specific nonapeptide probe screening from a phage display library conjugated with MnO2 nanosheets with peroxidase-like activity. Nanoscale 10(6), 2825–2833 (2018)

    Article  CAS  PubMed  Google Scholar 

  24. Han, L., Liu, P., Zhang, H., Li, F., Liu, A.: Phage capsid protein-directed MnO2 nanosheets with peroxidase-like activity for spectrometric biosensing and evaluation of antioxidant behaviour. Chem. Commun. (Camb) 53(37), 5216–5219 (2017)

    Article  CAS  Google Scholar 

  25. Han, L., Shi, J., Liu, A.: Novel biotemplated MnO2 1D nanozyme with controllable peroxidase-like activity and unique catalytic mechanism and its application for glucose sensing. Sens. Actuators B Chem. 252, 919–926 (2017)

    Article  CAS  Google Scholar 

  26. Liu, P., Wang, Y., Han, L., Cai, Y., Ren, H., Ma, T., Li, X., Petrenko, V.A., Liu, A.: Colorimetric assay of bacterial pathogens based on Co3O4 magnetic nanozymes conjugated with specific fusion phage proteins and magnetophoretic chromatography. ACS Appl. Mater. Interfaces 12(8), 9090–9097 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. Liu, C., Cai, Y., Wang, J., Liu, X., Ren, H., Yan, L., Zhang, Y., Yang, S., Guo, J., Liu, A.: facile preparation of homogeneous copper nanoclusters exhibiting excellent tetraenzyme mimetic activities for colorimetric glutathione sensing and fluorimetric ascorbic acid sensing. ACS Appl. Mater. Interfaces 12(38), 42521–42530 (2020)

    Article  CAS  PubMed  Google Scholar 

  28. Han, L., Li, C., Zhang, T., Lang, Q., Liu, A.: Au@Ag heterogeneous nanorods as nanozyme interfaces with peroxidase-like activity and their application for one-pot analysis of glucose at nearly neutral pH. ACS Appl. Mater. Interfaces 7(26), 14463–14470 (2015)

    Article  CAS  PubMed  Google Scholar 

  29. Thomas, A., Fischer, A., Goettmann, F., Antonietti, M., Müller, J.O., Schlögl, R., Carlsson, J.M.: Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 18(41), 4893 (2008)

    Article  CAS  Google Scholar 

  30. Katsumata, K., Motoyoshi, R., Matsushita, N., Okada, K.: Preparation of graphitic carbon nitride (g-C3N4)/WO3 composites and enhanced visible-light-driven photodegradation of acetaldehyde gas. J. Hazard. Mater. 260, 475–482 (2013)

    Article  CAS  PubMed  Google Scholar 

  31. Jullian, C., Fernandez-Sandoval, S., Celis-Barros, C., Abarca, B., Ballesteros, R., Zapata-Torres, G.: Supramolecular assemblies of phenyl-pyridyl-triazolopyridine and beta-cyclodextrin as sensor of divalent cations in aqueous solution. Carbohydr. Polym. 121, 295–301 (2015)

    Article  CAS  PubMed  Google Scholar 

  32. Xu, Y., Wang, L., Zhou, Y., Guo, J., Zhang, S., Lu, Y.: Synthesis of heterostructure SnO2/graphitic carbon nitride composite for high-performance electrochemical supercapacitor. J. Electroanal. Chem. 852, 113507 (2019)

    Article  CAS  Google Scholar 

  33. Zang, Y., Li, L., Li, X., Lin, R., Li, G.: Synergistic collaboration of g-C3N4/SnO2 composites for enhanced visible-light photocatalytic activity. Chem. Eng. J. 246, 277–286 (2014)

    Article  CAS  Google Scholar 

  34. Li, L., Hu, Y., Deng, D., Song, H., Lv, Y.: Highly sensitive cataluminescence gas sensors for 2-butanone based on g-C3N4 sheets decorated with CuO nanoparticles. Anal. Bioanal. Chem. 408(30), 8831–8841 (2016)

    Article  CAS  PubMed  Google Scholar 

  35. Singh, J., Kumari, P., Basu, S.: Degradation of toxic industrial dyes using SnO2/g-C3N4 nanocomposites: Role of mass ratio on photocatalytic activity. J. Photochem. Photobiol. A 371, 136–143 (2019)

    Article  CAS  Google Scholar 

  36. Yang, S., Gong, Y., Zhang, J., Zhan, L., Ma, L., Fang, Z., Vajtai, R., Wang, X., Ajayan, P.M.: Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 25(17), 2452–2456 (2013)

    Article  CAS  PubMed  Google Scholar 

  37. Rono, N., Kibet, J.K., Martincigh, B.S., Nyamori, V.O.: A review of the current status of graphitic carbon nitride. Crit. Rev. Solid State Mater. Sci., 1–29 (2020)

  38. Ismael, M.: A review on graphitic carbon nitride (g-C3N4) based nanocomposites: synthesis, categories, and their application in photocatalysis. J. Alloys Compd. 846, 156446 (2020)

    Article  CAS  Google Scholar 

  39. Chen, W., Liu, T.Y., Huang, T., Liu, X.H., Yang, X.J.: Novel mesoporous P-doped graphitic carbon nitride nanosheets coupled with ZnIn2S4 nanosheets as efficient visible light driven heterostructures with remarkably enhanced photo-reduction activity. Nanoscale 8(6), 3711–3719 (2016)

    Article  CAS  PubMed  Google Scholar 

  40. Zhao, X., Li, S., Yu, X., Gang, R., Wang, H.: In situ growth of CeO2 on g-C3N4 nanosheets toward a spherical g-C3N4/CeO2 nanozyme with enhanced peroxidase-like catalysis: a selective colorimetric analysis strategy for mercury (II). Nanoscale 12(41), 21440–21446 (2020)

    Article  CAS  PubMed  Google Scholar 

  41. Fan, Y., Zhang, W., Liu, Y., Zeng, Z., Quan, X., Zhao, H.: Three-dimensional branched crystal carbon nitride with enhanced intrinsic peroxidase-like activity: a hypersensitive platform for colorimetric detection. ACS Appl. Mater. Interfaces 11(19), 17467–17474 (2019)

    Article  CAS  PubMed  Google Scholar 

  42. Liu, B., Wang, Y., Chen, Y., Guo, L., Wei, G.: Biomimetic two-dimensional nanozymes: synthesis, hybridization, functional tailoring, and biosensor applications. J. Mater. Chem. B 8(44), 10065–10086 (2020)

    Article  CAS  PubMed  Google Scholar 

  43. Siddiqui, A.S., Hayat, A., Nawaz, M.H., Ahmad, M.A., Nasir, M.: Effect of sulfur doping on graphene oxide towards amplified fluorescence quenching based ultrasensitive detection of hydrogen peroxide. Appl. Surf. Sci. 509, 144695 (2020)

    Article  CAS  Google Scholar 

  44. She, X., Xu, H., Xu, Y., Yan, J., Xia, J., Xu, L., Song, Y., Jiang, Y., Zhang, Q., Li, H.: Exfoliated graphene-like carbon nitride in organic solvents: enhanced photocatalytic activity and highly selective and sensitive sensor for the detection of trace amounts of Cu2+. J. Mater. Chem. 2(8), 2563–2570 (2014)

    Article  CAS  Google Scholar 

  45. Ahmed, A., John, P., Nawaz, M.H., Hayat, A., Nasir, M.: Zinc-doped mesoporous graphitic carbon nitride for colorimetric detection of hydrogen peroxide. ACS Appl. Nano Mater. 2(8), 5156–5168 (2019)

    Article  CAS  Google Scholar 

  46. Mu, J., Li, J., Zhao, X., Yang, E.-C., Zhao, X.-J.: Cobalt-doped graphitic carbon nitride with enhanced peroxidase-like activity for wastewater treatment. RSC Adv. 6(42), 35568–35576 (2016)

    Article  CAS  Google Scholar 

  47. Qiao, F., Wang, J., Ai, S., Li, L.: As a new peroxidase mimetics: The synthesis of selenium doped graphitic carbon nitride nanosheets and applications on colorimetric detection of H2O2 and xanthine. Sens. Actuators B Chem. 216, 418–427 (2015)

    Article  CAS  Google Scholar 

  48. Wu, N., Wang, Y.T., Wang, X.Y., Guo, F.N., Wen, H., Yang, T., Wang, J.H.: Enhanced peroxidase-like activity of AuNPs loaded graphitic carbon nitride nanosheets for colorimetric biosensing. Anal. Chim. Acta 1091, 69–75 (2019)

    Article  CAS  PubMed  Google Scholar 

  49. Song, Y., Qu, K., Zhao, C., Ren, J., Qu, X.: Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 22(19), 2206–2210 (2010)

    Article  CAS  PubMed  Google Scholar 

  50. Miao, Y.-E., He, S., Zhong, Y., Yang, Z., Tjiu, W.W., Liu, T.: A novel hydrogen peroxide sensor based on Ag/SnO2 composite nanotubes by electrospinning. Electrochim. Acta 99, 117–123 (2013)

    Article  CAS  Google Scholar 

  51. Panagiotopoulos, A., Gkouma, A., Vassi, A., Johnson, C.J., Cass, A.E.G., Topoglidis, E.: Hemin modified SnO2 films on ITO-PET with enhanced activity for electrochemical sensing. Electroanalysis 30(9), 1956–1964 (2018)

    Article  CAS  Google Scholar 

  52. Liu, Y., Wang, L., Yang, L., Zhan, Y., Zou, L., Ye, B.: Nonenzymatic H2O2 electrochemical sensor based on SnO2 NPs coated polyethylenimine functionalized graphene. Electroanalysis 29(9), 2044–2052 (2017)

    Article  CAS  Google Scholar 

  53. Liu, S., Yu, B., Li, F., Ji, Y., Zhang, T.: Coaxial electrospinning route to prepare Au-loading SnO2 hollow microtubes for non-enzymatic detection of H2O2. Electrochim. Acta 141, 161–166 (2014)

    Article  CAS  Google Scholar 

  54. Kafi, A.K.M., Wali, Q., Jose, R., Biswas, T.K., Yusoff, M.M.: A glassy carbon electrode modified with SnO2 nanofibers, polyaniline and hemoglobin for improved amperometric sensing of hydrogen peroxide. Microchim. Acta 184(11), 4443–4450 (2017)

    Article  CAS  Google Scholar 

  55. Fu, Y., Huang, D., Li, C., Zou, L., Ye, B.: Graphene blended with SnO2 and Pd-Pt nanocages for sensitive non-enzymatic electrochemical detection of H2O2 released from living cells. Anal. Chim. Acta 1014, 10–18 (2018)

    Article  CAS  PubMed  Google Scholar 

  56. Jana, S., Mondal, A.: Fabrication of SnO2/alpha-Fe2O3, SnO2/alpha-Fe2O3-PB heterostructure thin films: enhanced photodegradation and peroxide sensing. ACS Appl. Mater. Interfaces 6(18), 15832–15840 (2014)

    Article  CAS  PubMed  Google Scholar 

  57. Samourgkanidis, G., Nikolaou, P., Gkovosdis-Louvaris, A., Sakellis, E., Blana, I.M., Topoglidis, E.: Hemin-modified SnO2/Metglas electrodes for the simultaneous electrochemical and magnetoelastic sensing of H2O2. Coatings 8(8), 284 (2018)

    Article  Google Scholar 

  58. Chauhan, S., Sahoo, S., Satpati, A.K., Sharma, C., Sahoo, P.K.: Prussian blue nanocubes-SnO2 quantum dots-reduced graphene oxide ternary nanocomposite: An efficient non-noble-metal electrocatalyst for non-enzymatic detection of H2O2. Electroanalysis 32(8), 1763–1771 (2020)

    Article  CAS  Google Scholar 

  59. Lavanya, N., Radhakrishnan, S., Sekar, C.: Fabrication of hydrogen peroxide biosensor based on Ni doped SnO2 nanoparticles. Biosens. Bioelectron. 36(1), 41–47 (2012)

    Article  CAS  PubMed  Google Scholar 

  60. Ding, Y., Yang, B., Liu, H., Liu, Z., Zhang, X., Zheng, X., Liu, Q.: FePt-Au ternary metallic nanoparticles with the enhanced peroxidase-like activity for ultrafast colorimetric detection of H2O2. Sens. Actuators B Chem. 259, 775–783 (2018)

    Article  CAS  Google Scholar 

  61. Zhang, Q., Li, M., Guo, C., Jia, Z., Wan, G., Wang, S., Min, D.: Fe3O4 nanoparticles loaded on Lignin nanoparticles applied as a peroxidase mimic for the sensitively colorimetric detection of H2O2. Nanomaterials (Basel) 9(2), 210 (2019)

    Article  CAS  Google Scholar 

  62. Qiao, F., Qi, Q., Wang, Z., Xu, K., Ai, S.: MnSe-loaded g-C3N4 nanocomposite with synergistic peroxidase-like catalysis: Synthesis and application toward colorimetric biosensing of H2O2 and glucose. Sens. Actuators B Chem. 229, 379–386 (2016)

    Article  CAS  Google Scholar 

  63. Sun, J., Li, C., Qi, Y., Guo, S., Liang, X.: Optimizing colorimetric assay based on V2O5 nanozymes for sensitive detection of H2O2 and glucose. Sensors (Basel) 16(4), 584 (2016)

    Article  Google Scholar 

  64. Lu, J., Zhang, H., Li, S., Guo, S., Shen, L., Zhou, T., Zhong, H., Wu, L., Meng, Q., Zhang, Y.: Oxygen-vacancy-enhanced peroxidase-like activity of reduced Co3O4 nanocomposites for the colorimetric detection of H2O2 and glucose. Inorg. Chem. 59(5), 3152–3159 (2020)

    Article  CAS  PubMed  Google Scholar 

  65. Liu, S., Tian, J., Wang, L., Luo, Y., Sun, X.: A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H2O2 and glucose. RSC Adv. 2(2), 411–413 (2012)

    Article  CAS  Google Scholar 

  66. Chen, J., Chen, Q., Chen, J., Qiu, H.: Magnetic carbon nitride nanocomposites as enhanced peroxidase mimetics for use in colorimetric bioassays, and their application to the determination of H2O2 and glucose. Microchim. Acta 183(12), 3191–3199 (2016)

    Article  CAS  Google Scholar 

  67. Ju, P., He, Y., Wang, M., Han, X., Jiang, F., Sun, C., Wu, C.: Enhanced peroxidase-like activity of MoS2 quantum dots functionalized g-C3N4 nanosheets towards colorimetric detection of H2O2. Nanomaterials (Basel) 8(12), 976 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Aftab Ahmed thanks Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus to allow him to use research facilities and acknowledges the efforts of his seniors and colleagues in guiding him to complete his PhD research work.

Funding

This work is supported by the Pakistan Science Foundation, Pakistan through its PSF-NSFC funded project [Project No. PSF/NSFC-II/Eng/P-COMSATS-Lhr (07)], and The World Academy of Sciences through COMSTECH-TWAS Joint Research Grants Programme having reference number 17-224 RG/MSN/AS_C–FR3240300073.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed and approved the final version of the manuscript.

Corresponding author

Correspondence to Muhammad Nasir.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A., Hayat, A., John, P. et al. Coral-shaped tin oxide incorporated graphitic carbon nitride nanosheets as peroxidase mimic for sensitive colorimetric and fluorescence quenching based detection of hydrogen peroxide. J Nanostruct Chem 11, 675–691 (2021). https://doi.org/10.1007/s40097-021-00392-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-021-00392-y

Keywords

Navigation