Skip to main content
Log in

Residual Ferrite Control of 9Cr ODS Steels by Tailoring Reverse Austenite Transformation

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

By tailoring the reverse austenite transformation behavior of 9Cr oxide dispersion strengthened (ODS) ferritic/martensitic steels, the residual ferrite in ODS steels can be controlled. The reverse austenite transformation behavior of ODS steels is closely related to the initial microstructure conditions prior to austenite transformation. For the spark plasma sintered steels, both the amount and size of residual ferrite decrease with increasing heating rate. Nevertheless, high heating rate will increase the amount and size of residual ferrite in annealed ODS steels. As an isothermal treatment is performed at temperatures above Ac1, lower isothermal temperature has a more evident effect on the ferrite distribution in spark plasma sintered steels than that in annealed ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G.R. Odette, M.J. Alinger, B.D. Wirth, Annu. Rev. Mater. Res. 38, 471 (2008)

    Article  CAS  Google Scholar 

  2. S. Ukai, M. Fujiwara, J. Nucl. Mater. 307–311, 749 (2002)

    Article  Google Scholar 

  3. C.A. Williams, P. Unifantowicz, N. Baluc, G.D.W. Smith, E.A. Marquis, Acta Mater. 61, 2219 (2013)

    Article  CAS  Google Scholar 

  4. D. Pazos, M. Suárez, A. Fernández, P. Fernández, I. Iturriza, N. Ordás, Fusion Eng. Des. 146, 2328 (2019)

    Article  CAS  Google Scholar 

  5. C.P. Massey, S.N. Dryepondt, P.D. Edmondson, K.A. Terrani, S.J. Zinkle, J. Nucl. Mater. 512, 227 (2018)

    Article  CAS  Google Scholar 

  6. S. Yang, J. Chen, H. Fu, P. Wang, Z. Zhou, P. Zheng, Fusion Eng. Des. 151, 111406 (2020)

    Article  CAS  Google Scholar 

  7. S.M.S. Aghamiri, T. Sowa, S. Ukai, N. Oono, K. Sakamoto, S. Yamashita, Mater. Sci. Eng. A 771, 138636 (2020)

    Article  CAS  Google Scholar 

  8. J. Fu, J.C. Brouwer, R.W.A. Hendrikx, I.M. Richardson, M.J.M. Hermans, Mater. Sci. Eng. A 770, 138568 (2020)

    Article  CAS  Google Scholar 

  9. S. Xu, F. Long, S.Y. Persaud, N. Guo, Z. Yao, M.R. Daymond, W. Gao, L. Zhang, Z. Zhou, Corros. Sci. 165, 108380 (2020)

    Article  CAS  Google Scholar 

  10. S. Ukai, Y. Kudo, X. Wu, N. Oono, S. Hayashi, S. Ohtsuka, T. Kaito, J. Nucl. Mater. 455, 700 (2014)

    Article  CAS  Google Scholar 

  11. H. Zhao, T. Liu, Z. Bai, L. Wang, W. Gao, L. Zhang, Corros. Sci. 163, 108272 (2020)

    Article  CAS  Google Scholar 

  12. M.S. El-Genk, J.M. Tournier, J. Nucl. Mater. 340, 93 (2005)

    Article  CAS  Google Scholar 

  13. M. Yamamoto, S. Ukai, S. Hayashi, T. Kaito, S. Ohtsuka, Mater. Sci. Eng. A 527, 4418 (2010)

    Article  Google Scholar 

  14. A. Das, P. Chekhonin, E. Altstadt, D. McClintock, F. Bergner, C. Heintze, R. Lindau, J. Nucl. Mater. 542, 152464 (2020)

    Article  CAS  Google Scholar 

  15. R. Miyata, S. Ukai, X. Wu, N. Oono, S. Hayashi, S. Ohtsuka, T. Kaito, J. Nucl. Mater. 442, 138 (2013)

    Article  Google Scholar 

  16. S. Ukai, S. Ohtsuka, Energy Mater. 2, 26 (2007)

    Article  CAS  Google Scholar 

  17. S. Ukai, S. Ohtsuka, T. Kaito, H. Sakasegawa, N. Chikata, S. Hayashi, S. Ohnuki, Mater. Sci. Eng. A 510–511, 115 (2009)

    Article  Google Scholar 

  18. M. Yamamoto, S. Ukai, S. Hayashi, T. Kaito, S. Ohtsuka, J. Nucl. Mater. 417, 237 (2011)

    Article  CAS  Google Scholar 

  19. X. Wu, S. Ukai, N. Oono, S. Hayashi, S. Shi, S. Chen, H. Sakasegawa, H. Tanigawa, J. Nucl. Mater. 452, 212 (2014)

    Article  CAS  Google Scholar 

  20. H. Oka, T. Tanno, S. Ohtsuka, Y. Yano, T. Kaito, Nucl. Mater. Energy 16, 230 (2018)

    Article  Google Scholar 

  21. S. Ohtsuka, S. Ukai, M. Fujiwara, J. Nucl. Mater. 351, 241 (2006)

    Article  CAS  Google Scholar 

  22. H. Oka, T. Tanno, S. Ohtsuka, Y. Yano, T. Uwaba, T. Kaito, M. Ohnuma, Nucl. Mater. Energy 9, 346 (2016)

    Article  Google Scholar 

  23. X. Zhou, Y. Liu, L. Yu, Z. Ma, Q. Guo, Y. Huang, H. Li, Mater. Des. 132, 158 (2017)

    Article  CAS  Google Scholar 

  24. C.A. Apple, G. Krauss, Acta Metall. 20, 849 (1972)

    Article  CAS  Google Scholar 

  25. S.J. Lee, Y.M. Park, Y.K. Lee, Mater. Sci. Eng. A 515, 32 (2009)

    Article  Google Scholar 

  26. Y. Tomota, W. Gong, S. Harjo, T. Shinozaki, Scr. Mater. 133, 79 (2017)

    Article  CAS  Google Scholar 

  27. K.D. Zilnyk, V.B. Oliveira, H.R.Z. Sandim, A. Möslang, D. Raabe, J. Nucl. Mater. 462, 360 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52034004) and the China Postdoctoral Science Foundation Grant (No. 2019M650028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchang Liu.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Chen, H., Liu, C. et al. Residual Ferrite Control of 9Cr ODS Steels by Tailoring Reverse Austenite Transformation. Acta Metall. Sin. (Engl. Lett.) 34, 187–195 (2021). https://doi.org/10.1007/s40195-020-01171-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01171-4

Keywords

Navigation