Skip to main content
Log in

Characterization of the Convoluted 3D Intermetallic Phases in a Recycled Al Alloy by Synchrotron X-ray Tomography and Machine Learning

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Fe-rich intermetallic phases in recycled Al alloys often exhibit complex and 3D convoluted structures and morphologies. They are the common detrimental intermetallic phases to the mechanical properties of recycled Al alloys. In this study, we used synchrotron X-ray tomography to study the true 3D morphologies of the Fe-rich phases, Al2Cu phases and casting defects in an as-cast Al-5Cu-1.5Fe-1Si alloy. Machine learning-based image processing approach was used to recognize and segment the different phases in the 3D tomography image stacks. In the studied condition, the β-Al9Fe2Si2 and ω-Al7Cu2Fe are found to be the main Fe-rich intermetallic phases. The β-Al9Fe2Si2 phases exhibit a spatially connected 3D network structure and morphology which in turn control the 3D spatial distribution of the Al2Cu phases and the shrinkage cavities. The Al3Fe phases formed at the early stage of solidification affect to a large extent the structure and morphology of the subsequently formed Fe-rich intermetallic phases. The machine learning method has been demonstrated as a powerful tool for processing big datasets in multidimensional imaging-based materials characterization work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Gronostajski, H. Marciniak, A. Matuszak, J. Mater. Process. Technol. 106, 34 (2000)

    Article  Google Scholar 

  2. R.G. Guan, D. Tie, Acta Metall. Sin. –Engl. Lett. 30, 409 (2017).

  3. J. Li, H. Lu, J. Guo, Z. Xu, Y. Zhou, Environ. Sci. Technol. 41, 1995 (2007)

    Article  CAS  Google Scholar 

  4. H. Lu, Z. Hou, M. Ma, G. Lu, Metals 7, 262 (2017)

    Article  Google Scholar 

  5. G. Gaustad, E. Olivetti, R. Kirchain, Resour. Conserv. Recycl. 58, 79 (2012)

    Article  Google Scholar 

  6. L.N.W. Damoah, L. Zhang, Metall. Mater. Trans. B 41, 886 (2010)

    Article  Google Scholar 

  7. J. Mi, Solidification Processing of Metallic Alloys Under External Fields, ed. by D. Eskin, J. Mi, Vol. 273. (Springer International Publishing, 2018), p. 243.

  8. Z. Zhang, C. Wang, B. Koe, C. M. Schlepütz, S. Irvine, J. Mi, Acta Mater. 209, 116796 (2021).

  9. B. Wang, D. Tan, T.L. Lee, J.C. Khong, F. Wang, D. Eskin, T. Connolley, K. Fezzaa, J. Mi, Acta Mater. 144, 505 (2018)

    Article  CAS  Google Scholar 

  10. F. Wang, D. Eskin, J. Mi, C. Wang, B. Koe, A. King, C. Reinhard, T. Connolley, Acta Mater. 141, 142 (2017)

    Article  CAS  Google Scholar 

  11. Y. Zhao, W. Du, B. Koe, T. Connolley, S. Irvine, P.K. Allan, C.M. Schlepütz, W. Zhang, F. Wang, D.G. Eskin, J. Mi, Scr. Mater. 146, 321 (2018)

    Article  CAS  Google Scholar 

  12. B. Cai, A. Kao, P.D. Lee, E. Boller, H. Basevi, A.B. Phillion, A. Leonardis, K. Pericleous, Scr. Mater. 165, 29 (2019)

    Article  CAS  Google Scholar 

  13. Z. Zhang, J.C. Khong, B. Koe, S. Luo, S. Huang, L. Qin, S. Cipiccia, D. Batey, A.J. Bodey, C. Rau, Y.L. Chiu, Z. Zhang, J.C. Gebelin, N. Green, J. Mi, Scr. Mater. 193, 71 (2021)

    Article  CAS  Google Scholar 

  14. Z. Ding, N. Zhang, L. Yu, W. Lu, J. Li, Q. Hu, Acta Metall. Sin. –Engl. Lett. 34, 145 (2021).

  15. N. Zhang, Q. Hu, F. Yang, W. Lu, Z. Ding, S. Cao, L. Yu, X. Ge, J. Li, Metall. Mater. Trans. A 51, 2711 (2020)

    Article  CAS  Google Scholar 

  16. F. Yang, Z. Li, Q. Wang, B. Jiang, B. Yan, P. Zhang, W. Xu, C. Dong, P.K. Liaw, N.P.J. Comput, Mater. 6, 101 (2020)

    CAS  Google Scholar 

  17. D.Z. Xue, D.Q. Xue, R. Yuan, Y. Zhou, P.V. Balachandran, X. Ding, J. Sun, T. Lookman, Acta Mater. 125, 532 (2017)

    Article  CAS  Google Scholar 

  18. Z. Xiong, Y. Cui, Z. Liu, Y. Zhao, M. Hu, J. Hu, Comput. Mater. Sci. 171, 109203 (2020).

  19. P.J. Pawar, R.V. Rao, Int. J. Adv. Manuf. Technol. 67, 995 (2013)

    Article  Google Scholar 

  20. K. Wang, X. Zhang, S. Zhang, X. Ji, H. Liu, J. Chin. Biomed. Eng. 39, 621 (2020)

    Google Scholar 

  21. S. Mbiki, J. McClendon, A.B. Angela, J. Gilmore, Med. Biol. Eng. Comput. 58, 1419 (2020)

    Article  Google Scholar 

  22. T. Manuwong, W. Zhang, P.L. Kazinczi, A.J. Bodey, C. Rau, J. Mi, Metall. Mater. Trans. A 46, 2908 (2015)

    Article  CAS  Google Scholar 

  23. Y. Zhao, W. Zhang, B. Koe, W. Du, M. Wang, W. Wang, E. Boller, A. Rack, Z. Sun, Da Shu, B. Sun, J. Mi, Mater. Charact. 164, 110353 (2020).

  24. T. Weitkamp, D. Haas, D. Wegrzynek, A. Rack, J. Synchrot. Radiat. 18, 617 (2011)

    Article  CAS  Google Scholar 

  25. C.B. Basak, N.H. Babu, Sci. Rep. 7, 1 (2017)

    Article  CAS  Google Scholar 

  26. Q. Wan, H.D. Zhao, C. Zou, Acta. Metall. Sin. 49, 284 (2013)

    Article  CAS  Google Scholar 

  27. D. See, R.C. Atwood, P.D. Lee, J. Mater. Sci. 36, 3423 (2001)

    Article  CAS  Google Scholar 

  28. M. Tiryakioglu, D. Hudak, J. Mater. Sci. 42, 10173 (2007)

    Article  CAS  Google Scholar 

  29. Z. Xia, B. Wen, C.Z. Fan, Metals. 9, 1322 (2019)

    Article  CAS  Google Scholar 

  30. P. Skjerpe, J. Microsc. 148, 33 (1987)

    Article  CAS  Google Scholar 

  31. L. Zhang, J. Gao, L.N.W. Damoah, D.G. Robertson, Miner. Process. Extr. Metall. Rev. 33, 99 (2012)

    Article  Google Scholar 

  32. Y.N. Mansurov, J.U. Rakhmonov, Non-ferrous Metals 2, 37 (2018)

    Article  Google Scholar 

  33. A. B. Nikolay, D. G. Eskin, A. A. Aksenov, Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys. (Elsevier, Amsterdam, 1st Edition 2005) p. 98.

  34. C. Fan, S. Long, H. Yang, X. Wang, J. Zhang, Int. J. Min. Met. Mater. 20, 890 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52004101), the Guangdong Province Science and Technology Plan (No. 2017B090903005), the UK Engineering and Physical Sciences Research Council (Grant No. EP/L019965/1). The authors also gratefully acknowledge the European Synchrotron Radiation Facility for provision of the synchrotron X-ray beamtime (proposal No. MA 3752) at the beamline ID19 as well as the free access to the University of Hull supercomputing facility, Viper, for data processing and the technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiguo Zhang or Jiawei Mi.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Qin, L., Guo, B. et al. Characterization of the Convoluted 3D Intermetallic Phases in a Recycled Al Alloy by Synchrotron X-ray Tomography and Machine Learning. Acta Metall. Sin. (Engl. Lett.) 35, 115–123 (2022). https://doi.org/10.1007/s40195-021-01312-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01312-3

Keywords

Navigation