Skip to main content
Log in

Isolation and characterization of a multidrug-resistant Clostridioides difficile toxinotype V from municipal wastewater treatment plant

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Purpose

Wastewater treatment plant (WWTP) is regarded as a potential source for transmission of Clostridioides difficile from urban areas into the surface water, through feces of human and animals. The aim of this study was to screen and characterize the C. difficile bacteria in inlet and outlet wastewater of different WWTPs in Tehran, Iran.

Methods

Totally, 72 samples were collected from three different WWTPs (inlet site and outlet sites) during a year. C. difficile was isolated and characterized in terms of toxins, toxinotype, resistance profile and genes, and colonization factors using PCR.

Results

One C. difficile toxinotype V was isolated from the outlet samples. The isolate was susceptible to vancomycin but resistant to metronidazole, tetracycline, ciprofloxacin, and moxifloxacin using MIC Test Strips. The isolated C. difficile was toxigenic (tcdA, tcdB, cdtA, cdtB positive and CPE positive) and had tcdC-A genotype. No mutations were found in fliC and fliD. The slpA sequence type was 078 − 01. The C. difficile was positive for tetM, int, but negative for vanA, nim, and tndX genes. Mutations were not observed in gyrA and gyrB genes.

Conclusions

This study provided evidence of presence of a multidrug-resistant C. difficile toxinotype V in one of the municipal WWTP. The transmission of such isolate to the environment and reuse of treated wastewater by human pose a threat to human health and dissemination of antibiotic resistant bacteria which are untreatable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hensgens MPM, Keessen EC, Squire MM, Riley TV, Koene MGJ, de Boer E, et al. Clostridium difficile infection in the community: a zoonotic disease? Clin Microbiol Infect. 2012;18:635–45.

    CAS  Google Scholar 

  2. Nikaeen M, Dehnavi HA, Hssanzadeh A, Jalali M. Occurrence of Clostridium difficile in two types of wastewater treatment plants. J Formos Med Assoc. 2015;114:663–5.

    Google Scholar 

  3. Warriner K, Xu C, Habash M, Sultan S, Weese SJ. Dissemination of Clostridium difficile in food and the environment: Significant sources of C. difficile community- acquired infection? J Appl Microbiol. 2017;122:542–53.

    CAS  Google Scholar 

  4. An X-L, Su J-Q, Li B, Ouyang W-Y, Zhao Y, Chen Q-L, et al. Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR. Environ Int. 2018;117:146–53.

    CAS  Google Scholar 

  5. Trinh S, Reysset G. Detection by PCR of the nim genes encoding 5-nitroimidazole resistance in Bacteroides spp. J Clin Microbiol. 1996;34:2078–84.

    CAS  Google Scholar 

  6. Wardal E, Kuch A, Gawryszewska I, Żabicka D, Hryniewicz W, Sadowy E. Diversity of plasmids and Tn1546-type transposons among VanA Enterococcus faecium in Poland. Eur J Clin Microbiol Infect Dis. 2017;36:313–28.

    CAS  Google Scholar 

  7. Dingle KE, Didelot X, Quan TP, Eyre DW, Stoesser N, Marwick CA, et al. A role for tetracycline selection in the evolution of Clostridium difficile PCR-ribotype 078. bioRxiv 2018:262352.

  8. Freeman J, Bauer MP, Baines SD, Corver J, Fawley WN, Goorhuis B, et al. The changing epidemiology of Clostridium difficile infections. Clin Microbiol Rev. 2010;23:529–49.

    CAS  Google Scholar 

  9. omano V, Pasquale V, Krovacek K, Mauri F, Demarta A, Dumontet S. Toxigenic Clostridium difficile PCR ribotypes from wastewater treatment plants in southern Switzerland. Appl Environ Microbiol. 2012;78:6643–6.

    Google Scholar 

  10. Gerding DN, Johnson S, Rupnik M, Aktories K. Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut Microbes. 2014;5:15–27.

    Google Scholar 

  11. Rineh A, Kelso MJ, Vatansever F, Tegos GP, Hamblin MR. Clostridium difficile infection: molecular pathogenesis and novel therapeutics. Expert Rev Anti Infect Ther. 2014;12:131–50.

    CAS  Google Scholar 

  12. Marcheggiani S, D’Ugo E, Puccinelli C, Giuseppetti R, D’Angelo AM, Gualerzi CO, et al. Detection of emerging and re-emerging pathogens in surface waters close to an urban area. Int J Environ Res Public Health. 2015;12:5505–27.

    Google Scholar 

  13. Norman KN, Scott HM, Harvey RB, Norby B, Hume ME, Andrews K. Prevalence and genotypic characteristics of Clostridium difficile in a closed and integrated human and swine population. Appl Environ Microbiol 2011:AEM-05007.

  14. Rivas L, Dupont P, Gilpin BJ, Cornelius AJ. Isolation and characterization of Clostridium difficile from a small survey of wastewater, food and animals in New Zealand. Lett Appl Microbiol. 2020;70:29–35.

    CAS  Google Scholar 

  15. Xu C, Weese JS, Flemming C, Odumeru J, Warriner K. Fate of Clostridium difficile during wastewater treatment and incidence in Southern Ontario watersheds. J Appl Microbiol. 2014;117:891–904.

    CAS  Google Scholar 

  16. Al Saif N, Brazier JS. The distribution of Clostridium difficile in the environment of South Wales. J Med Microbiol. 1996;45:133–7.

    CAS  Google Scholar 

  17. Steyer A, Gutiérrez-Aguirre I, Rački N, Glaser SB, Humar BB, Stražar M, et al. The detection rate of enteric viruses and Clostridium difficile in a waste water treatment plant effluent. Food Environ Virol. 2015;7:164–72.

    CAS  Google Scholar 

  18. Moradigaravand D, Gouliouris T, Ludden C, Reuter S, Jamrozy D, Blane B, et al. Genomic survey of Clostridium difficile reservoirs in the East of England implicates environmental contamination of wastewater treatment plants by clinical lineages. Microb Genomics. 2018;4:e000162.

    Google Scholar 

  19. Barbut F, Kajzer C, Planas N, Petit J-C. Comparison of three enzyme immunoassays, a cytotoxicity assay, and toxigenic culture for diagnosis of Clostridium difficile-associated diarrhea. J Clin Microbiol. 1993;31:963–7.

    CAS  Google Scholar 

  20. Erikstrup LT, Danielsen TKL, Hall V, Olsen KEP, Kristensen B, Kahlmeter G, et al. Antimicrobial susceptibility testing of Clostridium difficile using EUCAST epidemiological cut-off values and disk diffusion correlates. Clin Microbiol Infect. 2012;18:267–72.

    Google Scholar 

  21. Kouassi KA, Dadie AT, N’Guessan KF, Dje KM, Loukou YG. Clostridium perfringens and Clostridium difficile in cooked beef sold in Côte d’Ivoire and their antimicrobial susceptibility. Anaerobe. 2014;28:90–4.

    CAS  Google Scholar 

  22. Arroyo LG, Kruth SA, Willey BM, Staempfli HR, Low DE, Weese JS. PCR ribotyping of Clostridium difficile isolates originating from human and animal sources. J Med Microbiol. 2005;54:163–6.

    CAS  Google Scholar 

  23. Spigaglia P, Mastrantonio P. Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J Clin Microbiol. 2002;40:3470–5.

    CAS  Google Scholar 

  24. Kikuchi E, Miyamoto Y, Narushima S, Itoh K. Design of species-specific primers to identify 13 species of Clostridium harbored in human intestinal tracts. Microbiol Immunol. 2002;46:353–8.

    CAS  Google Scholar 

  25. Lemee L, Dhalluin A, Testelin S, Mattrat M-A, Maillard K, Lemeland J-F, et al. Multiplex PCR targeting tpi (triose phosphate isomerase), tcdA (Toxin A), and tcdB (Toxin B) genes for toxigenic culture of Clostridium difficile. J Clin Microbiol. 2004;42:5710–4.

    CAS  Google Scholar 

  26. Zheng L, Keller SF, Lyerly DM, Carman RJ, Genheimer CW, Gleaves CA, et al. Multicenter evaluation of a new screening test that detects Clostridium difficile in fecal specimens. J Clin Microbiol. 2004;42:3837–40.

    CAS  Google Scholar 

  27. Persson S, Torpdahl M, Olsen KEP. New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin Microbiol Infect. 2008;14:1057–64.

    CAS  Google Scholar 

  28. Tasteyre A, Karjalainen T, Avesani V, Delmée M, Collignon A, Bourlioux P, et al. Phenotypic and genotypic diversity of the flagellin gene (fliC) among Clostridium difficile isolates from different serogroups. J Clin Microbiol. 2000;38:3179–86.

    CAS  Google Scholar 

  29. Barc M. Molecular characterization of fliD gene encoding flagellar cap and its expression among Clostridium difficile isolates from different serogroups. Society. 2001;39:1178–83.

    Google Scholar 

  30. Kato H, Kato H, Ito Y, Akahane T, Izumida S, Yokoyama T, et al. Typing of Clostridium difficile isolates endemic in Japan by sequencing of slpA and its application to direct typing. J Med Microbiol. 2010;59:556–62.

    CAS  Google Scholar 

  31. Marchese A, Ramirez M, Schito GC, Tomasz A. Molecular epidemiology of penicillin-resistant Streptococcus pneumoniae isolates recovered in Italy from 1993 to 1996. J Clin Microbiol. 1998;36:2944–9.

    CAS  Google Scholar 

  32. Lubbe MM, Stanley K, Chalkley LJ. Prevalence of nim genes in anaerobic/facultative anaerobic bacteria isolated in South Africa. FEMS Microbiol Lett. 1999;172:79–83.

    CAS  Google Scholar 

  33. Kariyama R, Mitsuhata R, Chow JW, Clewell B, Kumon H. Simple and reliable multiplex PCR assay for surveillance isolates of simple and reliable multiplex PCR assay for surveillance isolates of vancomycin-resistant Enterococci. J Clin Microbiol. 2000;38:3092–5.

    CAS  Google Scholar 

  34. Spigaglia P, Barbanti F, Mastrantonio P, Brazier JS, Barbut F, Delmée M, et al. Fluoroquinolone resistance in Clostridium difficile isolates from a prospective study of C. difficile infections in Europe. J Med Microbiol. 2008;57:784–9.

    CAS  Google Scholar 

  35. Spigaglia P, Carucci V, Barbanti F, Mastrantonio P. ErmB determinants and Tn 916 -like elements in clinical isolates of Clostridium difficile. Antimicrob Agents Chemother. 2005;49:2550–3.

    CAS  Google Scholar 

  36. Dong D, Zhang L, Chen X, Jiang C, Yu B, Wang X, et al. Antimicrobial susceptibility and resistance mechanisms of clinical Clostridium difficile from a Chinese tertiary hospital. Int J Antimicrob Agents. 2013;41:80–4.

    CAS  Google Scholar 

  37. Rupnik M, Avesani V, Janc M, von Eichel-Streiber C, Delmée M. A Novel toxinotyping scheme and correlation of toxinotypes with serogroups of Clostridium difficile isolates. J Clin Microbiol. 1998;36:2240–7.

    CAS  Google Scholar 

  38. Numberger D, Ganzert L, Zoccarato L, Mühldorfer K, Sauer S, Grossart H-P, et al. Characterization of bacterial communities in wastewater with enhanced taxonomic resolution by full-length 16S rRNA sequencing. Sci Rep. 2019;9:1–14.

    CAS  Google Scholar 

  39. Marcheggiani S, Iaconelli M, D’angelo A, Pierdominici E, La Rosa G, Muscillo M, et al. Microbiological and 16S rRNA analysis of sulphite-reducing clostridia from river sediments in central Italy. BMC Microbiol. 2008;8:171–82.

    Google Scholar 

  40. Wen Q, Tutuka C, Keegan A, Jin B. Fate of pathogenic microorganisms and indicators in secondary activated sludge wastewater treatment plants. J Environ Manage. 2009;90:1442–7.

    CAS  Google Scholar 

  41. Wéry N, Monteil C, Pourcher A-M, Godon J-J. Human-specific fecal bacteria in wastewater treatment plant effluents. Water Res. 2010;44:1873–83.

    Google Scholar 

  42. Yezli S, Otter JA. Minimum infective dose of the major human respiratory and enteric viruses transmitted through food and the environment. Food Environ Virol. 2011;3:1–30.

    Google Scholar 

  43. Simango C. Prevalence of Clostridium difficile in the environment in a rural community in Zimbabwe. Trans R Soc Trop Med Hyg. 2006;100:1146–50.

    Google Scholar 

  44. Schaeffler H, Breitrueck A. Clostridium difficile–From colonization to infection. Front Microbiol. 2018;9:646–58.

    Google Scholar 

  45. Cheng J, Xiao M, Kudinha T, Kong F, Xu Z. Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolates from a university teaching hospital in China. Front Microbiol. 2016;7:1–10.

    Google Scholar 

  46. Curry SR, Marsh JW, Muto CA, O’Leary MM, Pasculle AW, Harrison LH. tcdC genotypes associated with severe TcdC truncation in an epidemic clone and other strains of Clostridium difficile. J Clin Microbiol. 2007;45:215–21.

    CAS  Google Scholar 

  47. Baghani A, Ghourchian S, Aliramezani A, Yaseri M, Mesdaghinia A, Douraghi M. Highly antibiotic-resistant Clostridium difficile isolates from Iranian patients. J Appl Microbiol. 2018;125:1518–25.

    CAS  Google Scholar 

  48. Zidaric V, Beigot S, Lapajne S, Rupnik M. The occurrence and high diversity of Clostridium difficile genotypes in rivers. Anaerobe. 2010;16:371–5.

    Google Scholar 

  49. Baines S, Wilcox M. Antimicrobial resistance and reduced susceptibility in Clostridium difficile: potential consequences for induction, treatment, and recurrence of C. difficile infection. Antibiotics. 2015;4:267–98.

    Google Scholar 

  50. Tasteyre A, Barc MC, Collignon A, Boureau H, Karjalainen T. Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization. Infect Immun. 2001;69:7937–40.

    CAS  Google Scholar 

  51. Kato H, Yokoyama T, Arakawa Y. Typing by sequencing the slpA gene of Clostridium difficile strains causing multiple outbreaks in Japan. J Med Microbiol. 2005;54:167–71.

    CAS  Google Scholar 

  52. Aliramezani A, Talebi M, Baghani A, Hajabdolbaghi M, Salehi M, Abdollahi A, et al. Pathogenicity locus determinants and toxinotyping of Clostridioides difficile isolates recovered from Iranian patients. New Microbes New Infect. 2018;25:52–7.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from Tehran University of Medical Sciences & Health Services (grant number: 30315).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alireza Mesdaghinia or Masoumeh Douraghi.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14.5 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghani, A., Alimohammadi, M., Aliramezani, A. et al. Isolation and characterization of a multidrug-resistant Clostridioides difficile toxinotype V from municipal wastewater treatment plant. J Environ Health Sci Engineer 18, 1281–1288 (2020). https://doi.org/10.1007/s40201-020-00546-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00546-0

Keywords

Navigation