Skip to main content
Log in

Evaluation of some chelating agents on phytoremediation efficiency of Amaranthus caudatus L. and Tagetes patula L. in soils contaminated with lead

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Purpose

This study was designed to evaluate the possible effects of some chelating agents on phytoremediation efficiency and plant growth parameters of Amaranthus caudatus L. and Tagetes patula L. in soils contaminated with lead.

Method

The plant species were grown in pots and treated with lead nitrate and in combination with 2.5, 2.0 and 2.5 mmol/kg of EDTA, SA and CA, respectively.

Results

The results showed that the highest accumulations of Pb (mg/kg) with 0.74 and 0.13 were found in the roots and stems of A. caudatus exposed to 400 mg/kg Pb containing EDTA and SA, respectively. Moreover, the highest accumulation of Pb in the roots and stems of T. patula with 0.87 and 1.5 mg/kg were observed in 400 mg/kg Pb- contaminated soil containing SA.

Conclusions

Although the results obtained showed that T. patula would have a better phytoextraction potential than A. caudatus, it should be noted that due to the Pb behavior in the soil and/or leaching of Pb from the soil columns during the irrigation period the low amounts of Pb absorption by the root and aerial parts of the plants compared to the added doses of Pb(NO3)2 solution to the soil samples, imply the studied plants haven’t the adequate potential for phytoextraction of Pb from contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alaboudi KA, Ahmed B, Brodie G. Phytoremediation of Pb and cd contaminated soils by using sunflower (Helianthus annuus) plant. Ann Agr Sci. 2018;63(1):123–7.

    Article  Google Scholar 

  2. Alkorta I, Hernández-Allica J, Becerril JM, Amezaga I, Albizu I, Onaindia M, et al. Chelate-enhanced phytoremediation of soils polluted with heavy metals. Rev Environ Sci Biotechnol. 2004;3:55–70.

    Article  CAS  Google Scholar 

  3. Al-Masri MS, Al-Akel B, Nashawani A, Amin Y, Khalifa KH, Al-Ain F. Transfer of 40K, 238U, 210Pb, and 210Po from soil to plant in various locations in south of Syria. J Environ Radioactiv. 2008;99:322–31.

    Article  CAS  Google Scholar 

  4. Baghaie AH, Aghilizefreei A. Effects of salicylic acid, humic acid, and EDTA chelate on the increasing Pb concentration in the barley inoculated with PGPR. J Adv Environ Health Res. 2020;8(1):10–8.

    CAS  Google Scholar 

  5. Bai J, Xiao R, Gong A, Gao H, Huang L. Assessment of heavy metal contamination of surface soils from typical paddy terrace wetlands on the Yunnan plateau of China. Physic Chem Earth. 2011;36:447–50.

    Article  Google Scholar 

  6. Bardiya-Bhurat K, Sharma S, Mishra Y, Patankar C. Tagetes erecta (marigold), a phytoremediant for Niand Pb-contaminated area: a hydroponic analysis and factors involved. Rendiconti Lincei. 2017;28(4):673–8.

    Article  Google Scholar 

  7. Barona A, Aranguiz I, Elias A. Metal associations in soils before and after EDTA extractive decontamination: implications for the effectiveness of further clean-up procedures. Environ Pollut. 2001;113:79–85.

    Article  CAS  Google Scholar 

  8. Carter MR, Gregorich EG. Soil Sampling and Methods of Analysis. 2nd ed. Boca Raton: CRC Press, Taylor and Francic Group; 2007. 33487–2742, p. 1262

  9. Cay S, Uyanik A, Soner Engin M, Kutbay HG. Effect of EDTA and tannic acid on the removal of cd, Ni, Pb and cu from artificially contaminated soil by Cavan. Int J Phytoremediat. 2015;17(1–6):568–74.

    Article  CAS  Google Scholar 

  10. Chen H, Cutright T. EDTA and HEDTA effects on cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere. 2001;45:21–8.

    Article  CAS  Google Scholar 

  11. Chen YX, Lin Q, Luo YM, He YF, Zhen SJ, Yu YL, et al. The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere. 2003;50:807–11.

    Article  CAS  Google Scholar 

  12. Chen YH, Li XD, Shen ZG. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere. 2004;57:187–96.

    Article  CAS  Google Scholar 

  13. Dahiya S, Karpe R, Hegde AG, Sharma RM. Lead, cadmium and nickel in chocolate and candies from suburban areas of Mumbai, India. J Food Compos Anal. 2005;18:517–22.

    Article  CAS  Google Scholar 

  14. Davodpour R, Sobhanardakani S, Cheraghi M, Abdi N, Lorestani B. Honeybees (Apis mellifera L.) as a potential bioindicator for detection of toxic and essential elements in the environment (case study: Markazi Province, Iran). Arch Environ Contam Toxicol. 2019;77(3):344–58.

    Article  CAS  Google Scholar 

  15. Drzewiecka K, Mleczek M. Salicylic acid accumulation as a result of cu, Zn, cd and Pb interactions in common reed (Phragmites australis) growing in natural ecosystems. Acta Physiol Plant. 2017;39:182.

    Article  Google Scholar 

  16. Ebrahimi M. Effect of EDTA treatment method on leaching of Pb and Cr by Phragmites australis (Cav.) Trin. Ex Steudel (common reed). Caspian J Environ Sci. 2015;13(2):153–66.

    Google Scholar 

  17. Evangelou MWH, Ebel M, Schaeffer A. Evaluation of the effect of small organic acids on phytoextraction of cu and Pb from soil with tobacco (Nicotiana tabacum). Chemosphere. 2006;63:996–1004.

    Article  CAS  Google Scholar 

  18. Garbisu C, Alkorta I. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol. 2001;77(3):229–36.

    Article  CAS  Google Scholar 

  19. Gardea-Torresdey J, Peralta-Videa J, Montes M, De La Rosa G, Corral-Diaz B. Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements. Bioresour Technol. 2004;92:229–35.

    Article  CAS  Google Scholar 

  20. Ghosh A, Manchanda N. Phytoremediation of heavy metals from water of Yamuna River by Tagetes patula, Bassica scoparia, Portulaca grandiflora. Asian Plant Res J. 2019;2(2):1–14.

    Google Scholar 

  21. Giordani C, Cecchi S, Zanchi C. Phytoremediation of soil polluted by nicked using agricultural crops. Environ Manag. 2005;36(5):675–81.

    Article  Google Scholar 

  22. Godwin PM, Pan Y, Xiao H, MT Afzal MT. Progress in preparation and application of modified biochar for improving heavy metal ion removal from wastewater. J Biores Bioprod. 2019;4:31–42.

    CAS  Google Scholar 

  23. Gupta DK, Srivastava A, Singh VP. EDTA enhances lead uptake and facilitates phytoremediation by vetiver grass. J Environ Biol. 2008;26:903–6.

    Google Scholar 

  24. Kayser A, Wenger K, Keller A, Attinger W, Felix HR, Gupta SK, et al. Enhancement of phytoextraction of Zn, cd, and cu from calcareous soil: the use of NTA and sulfur amendments. Environ Sci Technol. 2000;34:1778–83.

    Article  CAS  Google Scholar 

  25. Khosropour E, Attarod P, Shirvany A, Grant Pypker T, Bayramzadeh V, Hakimi L, et al. Response of Platanus orientalis leaves to urban pollution by heavy metals. J For Res. 2019;30:1437–45.

    Article  CAS  Google Scholar 

  26. Kovács V, Gondor OK, Szalai G, Darkó É, Majláth I, Janda T, et al. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance. J Hazard Mater. 2014;280:12–9.

    Article  Google Scholar 

  27. Lai H-Y, Chen Z-S. Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Chemosphere. 2004;55:421–30.

    Article  CAS  Google Scholar 

  28. Liphadzi MS, Kirkaham MB, Mankin KR, Paulsen GM. EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm. Plant Soil. 2003;257:171–82.

    Article  CAS  Google Scholar 

  29. Lombi E, Zhao FJ, Dunham SJ, McGrath SP. Phytoremediation of heavy metal contaminatedsoils: natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual. 2001;30:1919–26.

    Article  CAS  Google Scholar 

  30. Luo C, Shen Z, Li X. Enhanced phytoextraction of cu, Pb, Zn and cd with EDTA and EDDS. Chemosphere. 2005;59:1–11.

    Article  CAS  Google Scholar 

  31. Luo C-L, Shen Z-G, Baker AJM, Li X-D. A novel strategy using biodegradable EDDS for the chemically enhanced phytoextraction of soils contaminated with heavy metals. Plant Soil. 2006;285:67–80.

    Article  CAS  Google Scholar 

  32. Luo J, Qi S, Gu XWS, Wang J, Xie X. An evaluation of EDTA additions for improving the phytoremediation efficiency of different plants under various cultivation systems. Ecotoxicology. 2016;25:646–54.

    Article  CAS  Google Scholar 

  33. Makino T, Kamiya T, Takano H, Itou T, Sekiya N, Sasaki K, et al. Remediation of cadmium-contaminated paddy soils by washing with calcium chloride: verification of on-site washing. Environ Pollut. 2007;147(1):112–9.

    Article  CAS  Google Scholar 

  34. Mani D, Kumar C, Patel NK, Sivakumar D. Enhanced clean-up of lead-contaminated alluvial soil through Chrysanthemum indicum L. Int J Environ Sci Technol. 2015;12:1211–22.

    Article  CAS  Google Scholar 

  35. Martínez-Villegas N, Flores-Vélez LM, Domínguez O. Sorption of lead in soil as a function of pH: a study case in México. Chemosphere. 2004;57:1537–42.

    Article  Google Scholar 

  36. Meers E, Hopgood M, Lesage E, Vervaeke P, Tack FMG, Verloo M. Enhanced phytoextraction : in search for EDTA alternatives. Int J Phytoremediat. 2004;6(2):95–109.

    Article  CAS  Google Scholar 

  37. Pandey S, Gupta K, Mukherjee AK. Impact of cadmium and lead on Catharanthus roses - a phytoremediation study. J Environ Biol. 2007;28:655–62.

    CAS  Google Scholar 

  38. Pavlović M, Rakić T, Pavlović D, Kostić O, Jarić S, Mataruga Z, et al. Seasonal variations of trace element contents in leaves and bark of horse chestnut (Aesculus hippocastanum L.) in urban and industrial regions in Serbia. Arch Biol Sci. 2017;69(2):201–14.

    Article  Google Scholar 

  39. Pereira BFF, de Abreu CA, Herpin U, de Abreu MF, Berton RS. Phytoremediation of lead by jack beans on a Rhodic hapludox amended with EDTA. Sci Agric. 2010;67(3):308–18.

    Article  CAS  Google Scholar 

  40. Purakayastha TJ, Viswanath T, Bhadraray S, Chhonkar PK, Adhikari PP, Suribabu K. Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. Int J Phytoremediat. 2008;10(1):61–72.

    Article  CAS  Google Scholar 

  41. Qu J, Cq L, Yuan X, Xh W, Cong Q, Wang L. The effect of sodium hydrogen phosphate/citric acid mixtures on phytoremediation by alfalfa & metals availability in soil. J Soil Sci Plant Nutr. 2011;11(2):85–95.

    Article  Google Scholar 

  42. Ramana S, Biswas AK, Singh AB, Ajay Ahirwar NK, Subba RA. Tolerance of ornamental succulent plant crown of thorns (Euphorbia milli) to chromium and its remediation. Int J Phytoremediat. 2015;17(1–6):363–8.

    Article  CAS  Google Scholar 

  43. Romeh AA, Khamis MA, Metwally SM. Potential of Plantago major L for phytoremediation of lead-contaminated soil and water. Water Air Soil Pollut. 2016;227:9.

    Article  Google Scholar 

  44. Sabzevari E, Sobhanardakani S. Analysis of selected heavy metals in indoor dust collected from city of Khorramabad, Iran: a case study. Jundishapur J Health Sci. 2018;10(3):e67382.

    Google Scholar 

  45. Saminathan SKM, Sarkar D, Andra SS, Datta R. Lead fractionation and bioaccessibility in contaminated soils with variable chemical properties. Chem Spec Bioavailab. 2010;22(4):215–25.

    Article  CAS  Google Scholar 

  46. Sinhal VK, Srivastava A, Singh VP. EDTA and citric acid mediated phytoextraction of Zn, cu, Pb and cd through marigold (Tagetes erecta). J Environ Biol. 2010;31:255–9.

    CAS  Google Scholar 

  47. Sipos P, Németh T, Mohai I, Dódony I. Effect of soil composition on adsorption of lead as reflected by a study on a natural forest soil profile. Geoderma. 2005;124:363–74.

    Article  CAS  Google Scholar 

  48. Shao Z, Lu W, Naser J, Zhang J, Yan L. Growth responses and accumulation characteristics of three ornamentals under copper and lead contamination in a hydroponic-culture experiment. Bull Environ Contam Toxicol. 2019;103:854–9.

    Article  CAS  Google Scholar 

  49. Sobhanardakani S, Heydari A, Khorasani NA, Arjmandi R. Development of new bioformulations of Pseudomonas fluorescens and evaluation of these products against damping-off of cotton seedlings. J Plant Pathol. 2010;92(1):83–8.

    Google Scholar 

  50. Sobhanardakani S, Tayebi L, Farmany A. Toxic metal (Pb, hg and as) contamination of muscle, gill and liver tissues of Otolithes rubber, Pampus argenteus, Parastromateus niger, Scomberomorus commerson and Onchorynchus mykiss. World App Sci J. 2011;14(10):1453–6.

    CAS  Google Scholar 

  51. Sun Y-b, Zhou Q-x, Diao C. Effects of cadmium and arsenic on growth and metal accumulation of cd-hyperaccumulator Solanum nigrum L. Bioresour Technol. 2008;99:1103–10.

    Article  CAS  Google Scholar 

  52. Sun Y-b, Zhou Q-x, An J, Liu Y-t, Liu L. Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance). Geoderma. 2009;150(1–2):106–12.

    Article  CAS  Google Scholar 

  53. Sun Y, Zhou Q, Xu Y, Wang L, Liang X. Phytoremediation for co-contaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plant Tagetes patula. J Hazard Mater. 2011;186:2075–82.

    Article  CAS  Google Scholar 

  54. Tariq SR, Ashraf A. Comparative evaluation of phytoremediation of metal contaminated soil of firing range by four different plant species. Arab J Chem. 2016;9:806–14.

    Article  CAS  Google Scholar 

  55. Turgut C, Pepe MK, Cutright TJ. The effect of EDTA and citric acid on phytoremediation of cd, Cr and Ni from soil using Helianthus annuus. Environ Pollut. 2004;131:147–54.

    Article  CAS  Google Scholar 

  56. Van Devivere PC, Saveyn H, Verstraete W, Feijtel TCJ, Schowanek DR. Biodegradation of metal–[S,S]-EDDS complexes. Environ Sci Technol. 2001;35:1765–70.

    Article  Google Scholar 

  57. Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, et al. Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res. 2009;16:765–94.

    Article  CAS  Google Scholar 

  58. Vassil AD, Kapulnik Y, Raskin I, Salt DE. The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiol. 1998;117(2):447–53.

    Article  CAS  Google Scholar 

  59. Vocciante M, Caretta A, Bua L, Bagatin R, Franchi E, Petruzzelli G, et al. Enhancements in phytoremediation technology: environmental assessment including different options of biomass disposal and comparison with a consolidated approach. J Environ Manag. 2019;237:560–8.

    Article  CAS  Google Scholar 

  60. Wang S, Liu J. The effectiveness and risk comparison of EDTA with EGTA in enhancing cd phytoextraction by Mirabilis jalapa L. Environ Monit Assess. 2014;186:751–9.

    Article  CAS  Google Scholar 

  61. Wang X, Wang Y, Mahmood Q, Islam E, Jin X, Li T, et al. The effect of EDDS addition on the phytoextraction efficiency from Pb contaminated soil by Sedum alfredii Hance. J Hazard Mater. 2009;168:530–5.

    Article  CAS  Google Scholar 

  62. Wenzel WW, Unterbrunner R, Sommer P, Sacco P. Chelate assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant Soil. 2003;249:83–96.

    Article  CAS  Google Scholar 

  63. Wu L, Luo YM, Xing XR, Christie P. EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agr Ecosys Environ. 2004;102(3):307–18.

    Article  CAS  Google Scholar 

  64. Yehia Mady A, Shein E. Comparison between particle size distribution as a predictor of pedotransfer functions using laser diffraction and sedimentation methods. Int J Soil Sci. 2017;12(2):65–71.

    Article  Google Scholar 

  65. Zeng P, Guo Z, Cao X, Xiao X, Liu Y, Shi L. Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium. Int J Phytoremediat. 2018;20(4):311–20.

    Article  CAS  Google Scholar 

  66. Zhang H, Guo Q, Yang J, Ma J, Chen G, Chen T, et al. Comparison of chelates for enhancing Ricinus communis L. phytoremediation of cd and Pb contaminated soil. Ecotoxicol Environ Saf. 2016;133:57–62.

    Article  CAS  Google Scholar 

  67. Zhuang P, Ye ZH, Lan CY, Xie ZW, Shu WS. Chemically assisted phytoextraction of heavy metal contaminated soils using three plant species. Plant Soil. 2005;276:153–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Hamedan Branch, Islamic Azad University for providing facilities to conduct and complete this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Nastaran Aghelan, Soheil Sobhan Ardakani, Mehrdad Cheraghi, Bahareh Lorestani and Hajar Merrikhpour]. The first draft of the manuscript was written by [Soheil Sobhan Ardakani] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Soheil Sobhanardakani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghelan, N., Sobhanardakani, S., Cheraghi, M. et al. Evaluation of some chelating agents on phytoremediation efficiency of Amaranthus caudatus L. and Tagetes patula L. in soils contaminated with lead. J Environ Health Sci Engineer 19, 503–514 (2021). https://doi.org/10.1007/s40201-021-00623-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00623-y

Keywords

Navigation