Skip to main content
Log in

A Review of Treatment Options for Progressive Supranuclear Palsy

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Progressive supranuclear palsy (PSP) is an atypical parkinsonian condition characterized by a symmetric akinetic–rigid syndrome, early falls, supranuclear gaze palsy, and a frontotemporal behavioral syndrome. The typical phenotype is termed Richardson’s syndrome, but numerous other phenotypes have been described. The pathophysiology of PSP is not fully understood, but dysfunction of the tau protein seems to play a central role. Despite exciting new knowledge on the pathophysiology of PSP, there is still no highly effective symptomatic or disease-modifying treatment. We review the evidence on pharmacotherapy and experimental therapies in PSP and provide levels of recommendation for the off-label use of commonly used drugs in this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steele JC, Richardson JC, Olszewski J. Progressive supranuclear palsy. A Heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol. 1964;10:333–59.

    Article  CAS  PubMed  Google Scholar 

  2. Williams DR, de Silva R, Paviour DC, Pittman A, Watt HC, Kilford L, et al. Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson’s syndrome and PSP-parkinsonism. Brain. 2005;128(Pt 6):1247–58.

    Article  PubMed  Google Scholar 

  3. Respondek G, Stamelou M, Kurz C, Ferguson LW, Rajput A, Chiu WZ, et al. The phenotypic spectrum of progressive supranuclear palsy: a retrospective multicenter study of 100 definite cases. Mov Disord. 2014;29(14):1758–66.

    Article  PubMed  Google Scholar 

  4. Ferrer I, Barrachina M, Puig B. Glycogen synthase kinase-3 is associated with neuronal and glial hyperphosphorylated tau deposits in Alzheimer’s disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol. 2002;104(6):583–91.

    CAS  PubMed  Google Scholar 

  5. Ingelsson M, Ramasamy K, Russ C, Freeman SH, Orne J, Raju S, et al. Increase in the relative expression of tau with four microtubule binding repeat regions in frontotemporal lobar degeneration and progressive supranuclear palsy brains. Acta Neuropathol. 2007;114(5):471–9.

    Article  CAS  PubMed  Google Scholar 

  6. Albers DS, Augood SJ. New insights into progressive supranuclear palsy. Trends Neurosci. 2001;24(6):347–53.

    Article  CAS  PubMed  Google Scholar 

  7. Ahmed Z, Josephs KA, Gonzalez J, DelleDonne A, Dickson DW. Clinical and neuropathologic features of progressive supranuclear palsy with severe pallido-nigro-luysial degeneration and axonal dystrophy. Brain. 2008;131(Pt 2):460–72.

    Article  PubMed  Google Scholar 

  8. Stamelou M, Hoeglinger GU. Atypical parkinsonism: an update. Curr Opin Neurol. 2013;26(4):401–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ries V, Oertel WH, Höglinger GU. Mitochondrial dysfunction as a therapeutic target in progressive supranuclear palsy. J Mol Neurosci. 2011;45(3):684–9.

    Article  CAS  PubMed  Google Scholar 

  10. Escobar-Khondiker M, Höllerhage M, Muriel MP, Champy P, Bach A, Depienne C, et al. Annonacin, a natural mitochondrial complex I inhibitor, causes tau pathology in cultured neurons. J Neurosci. 2007;27(29):7827–37.

    Article  CAS  PubMed  Google Scholar 

  11. Höglinger GU, Melhem NM, Dickson DW, Sleiman PM, Wang LS, Klei L, et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat Genet. 2011;43(7):699–705.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang H, Zhang YW, Chen Y, Huang X, Zhou F, Wang W, et al. Appoptosin is a novel pro-apoptotic protein and mediates cell death in neurodegeneration. J Neurosci. 2012;32(44):15565–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao Y, Tseng IC, Heyser CJ, Rockenstein E, Mante M, Adame A, et al. Appoptosin-mediated caspase cleavage of tau contributes to progressive supranuclear palsy pathogenesis. Neuron. 2015;87(5):963–75.

    Article  CAS  PubMed  Google Scholar 

  14. Respondek G, Höglinger GU, Stamelou M. From a single nucleotide polymorphism to tau pathology: appoptosin is the missing link. Mov Disord. 2015;30(14):1871–2.

    Article  PubMed  Google Scholar 

  15. Boxer AL, Lang AE, Grossman M, Knopman DS, Miller BL, Schneider LS, et al. Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol. 2014;13(7):676–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tolosa E, Litvan I, Höglinger GU, Burn D, Lees A, Andres MV, et al. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov Disord. 2014;29(4):470–8.

    Article  CAS  PubMed  Google Scholar 

  17. Koros C, Stamelou M. Interventions in progressive supranuclear palsy. Parkinsonism Relat Disord. 2016;22(Suppl 1):S93–5.

    Article  PubMed  Google Scholar 

  18. Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F. Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci. 1987;84(16):5976–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brandel JP, Hirsch EC, Malessa S, Duyckaerts C, Cervera P, Agid Y. Differential vulnerability of cholinergic projections to the mediodorsal nucleus of the thalamus in senile dementia of Alzheimer type and progressive supranuclear palsy. Neuroscience. 1991;41(1):25–31.

    Article  CAS  PubMed  Google Scholar 

  20. Chinaglia G, Landwehrmeyer B, Probst A, Palacios JM. Serotoninergic terminal transporters are differentially affected in Parkinson’s disease and progressive supranuclear palsy: an autoradiographic study with [3H]citalopram. Neuroscience. 1993;54(3):691–9.

    Article  CAS  PubMed  Google Scholar 

  21. Landwehrmeyer B, Palacios JM. Alterations of neurotransmitter receptors and neurotransmitter transporters in progressive supranuclear palsy. J Neural Transm Suppl. 1994;42:229–46.

    Article  CAS  PubMed  Google Scholar 

  22. Blin J, Mazetti P, Mazoyer B, Rivaud S, Ben Ayed S, Malapani C, et al. Does the enhancement of cholinergic neurotransmission influence brain glucose kinetics and clinical symptomatology in progressive supranuclear palsy? Brain. 1995;118(Pt 6):1485–95.

    Article  PubMed  Google Scholar 

  23. Kasashima S, Oda Y. Cholinergic neuronal loss in the basal forebrain and mesopontine tegmentum of progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol. 2003;105(2):117–24.

    CAS  PubMed  Google Scholar 

  24. Warren NM, Piggott MA, Perry EK, Burn DJ. Cholinergic systems in progressive supranuclear palsy. Brain. 2005;128(Pt 2):239–49.

    CAS  PubMed  Google Scholar 

  25. Stamelou M, Matusch A, Elmenhorst D, Hurlemann R, Eggert KM, Zilles K, et al. Nigrostriatal upregulation of 5-HT2A receptors correlates with motor dysfunction in progressive supranuclear palsy. Mov Disord. 2009;24(8):1170–5.

    Article  PubMed  Google Scholar 

  26. Hazrati LN, Wong JC, Hamani C, Lozano AM, Poon YY, Dostrovsky JO, et al. Clinicopathological study in progressive supranuclear palsy with pedunculopontine stimulation. Mov Disord. 2012;27(10):1304–7.

    Article  PubMed  Google Scholar 

  27. Stamelou M, Schöpe J, Wagenpfeil S, Del Ser T, Bang J, Lobach IY, et al. Power calculations and placebo effect for future clinical trials in progressive supranuclear palsy. Mov Disord. 2016;31(5):742–7.

    Article  CAS  PubMed  Google Scholar 

  28. Litvan I, Agid Y, Calne D, Campbell G, Dubois B, Duvoisin RC, et al. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology. 1996;47(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  29. Nieforth KA, Golbe LI. Retrospective study of drug response in 87 patients with progressive supranuclear palsy. Clin Neuropharmacol. 1993;16(4):338–46.

    Article  CAS  PubMed  Google Scholar 

  30. Collins SJ, Ahlskog JE, Parisi JE, Maraganore DM. Progressive supranuclear palsy: neuropathologically based diagnostic clinical criteria. J Neurol Neurosurg Psychiatry. 1995;58(2):167–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Litvan I, Mangone CA, McKee A, Verny M, Parsa A, Jellinger K, et al. Natural history of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome) and clinical predictors of survival: a clinicopathological study. J Neurol Neurosurg Psychiatry. 1996;60(6):615–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Litvan I. The clinical and pathologic hallmarks of progressive supranuclear palsy. Curr Opin Neurol. 1997;10(4):346–50.

    Article  CAS  PubMed  Google Scholar 

  33. Kompoliti K, Goetz CG, Litvan I, Jellinger K, Verny M. Pharmacological therapy in progressive supranuclear palsy. Arch Neurol. 1998;55(8):1099–102.

    Article  CAS  PubMed  Google Scholar 

  34. Defazio G, De Mari M, De Salvia R, Lamberti P, Giorelli M, Livrea P. “Apraxia of eyelid opening” induced by levodopa therapy and apomorphine in atypical parkinsonism (possible progressive supranuclear palsy): a case report. Clin Neuropharmacol. 1999;22(5):292–4.

    CAS  PubMed  Google Scholar 

  35. Litvan I. Diagnosis and management of progressive supranuclear palsy. Semin Neurol. 2001;21(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  36. Birdi S, Rajput AH, Fenton M, Donat JR, Rozdilsky B, Robinson C, et al. Progressive supranuclear palsy diagnosis and confounding features: report on 16 autopsied cases. Mov Disord. 2002;17(6):1255–64.

    Article  PubMed  Google Scholar 

  37. Carrilho PE, Barbosa ER. Progressive supranuclear palsy in a sample of Brazilian population: clinical features of 16 patients. Arq Neuropsiquiatr. 2002;60(4):917–22.

    Article  PubMed  Google Scholar 

  38. Diroma C, Dell’Aquila C, Fraddosio A, Lamberti S, Mastronardi R, Russo I, et al. Natural history and clinical features of progressive supranuclear palsy: a clinical study. Neurol Sci. 2003;24(3):176–7.

    Article  CAS  PubMed  Google Scholar 

  39. Marra M, Toni V, Trianni G, Coppola G. Progressive supranuclear palsy: analysis of six cases. Neurol Sci. 2003;24(3):186–7.

    Article  CAS  PubMed  Google Scholar 

  40. Nath U, Ben-Shlomo Y, Thomson RG, Lees AJ, Burn DJ. Clinical features and natural history of progressive supranuclear palsy: a clinical cohort study. Neurology. 2003;60(6):910–6.

    Article  CAS  PubMed  Google Scholar 

  41. Lang AE. Treatment of progressive supranuclear palsy and corticobasal degeneration. Mov Disord. 2005;20(Suppl 12):S83–91.

    Article  PubMed  Google Scholar 

  42. van Balken I, Litvan I. Current and future treatments in progressive supranuclear palsy. Curr Treat Options Neurol. 2006;8(3):211–23.

    Article  PubMed  Google Scholar 

  43. Chung EJ, Kim SJ. Levodopa-induced facial dystonia in a case of progressive supranuclear palsy. J Mov Disord. 2012;5(1):28–32.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Arena JE, Weigand SD, Whitwell JL, Hassan A, Eggers SD, Höglinger GU, et al. Progressive supranuclear palsy: progression and survival. J Neurol. 2016;263(2):380–9.

    Article  PubMed  Google Scholar 

  45. Neophytides A, Lieberman AN, Goldstein M, Gopinathan G, Leibowitz M, Bock J, et al. The use of lisuride, a potent dopamine and serotonin agonist, in the treatment of progressive supranuclear palsy. J Neurol Neurosurg Psychiatry. 1982;45(3):261–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jackson JA, Jankovic J, Ford J. Progressive supranuclear palsy: clinical features and response to treatment in 16 patients. Ann Neurol. 1983;13(3):273–8.

    Article  CAS  PubMed  Google Scholar 

  47. Weiner WJ, Minagar A, Shulman LM. Pramipexole in progressive supranuclear palsy. Neurology. 1999;52(4):873–4.

    Article  CAS  PubMed  Google Scholar 

  48. van Balken I, Litvan I. Current and future therapeutic approaches in progressive supranuclear palsy. Handb Clin Neurol. 2008;89:493–508.

    Article  PubMed  Google Scholar 

  49. Moccia M, Picillo M, Erro R, Allocca R, Barone P, Vitale C. Diagnosis and treatment of restless legs syndrome in progressive supranuclear palsy. J Neurol Sci. 2015;350(1–2):103–4.

    Article  PubMed  Google Scholar 

  50. Poewe W, Mahlknecht P, Krismer F. Therapeutic advances in multiple system atrophy and progressive supranuclear palsy. Mov Disord. 2015;30(11):1528–38.

    Article  PubMed  Google Scholar 

  51. Paulson GW, Lowery HW, Taylor GC. Progressive supranuclear palsy: pneumoencephalography, electronystagmography and treatment with methysergide. Eur Neurol. 1981;20(1):13–6.

    Article  CAS  PubMed  Google Scholar 

  52. Rafal RD, Grimm RJ. Progressive supranuclear palsy: functional analysis of the response to methysergide and antiparkinsonian agents. Neurology. 1981;31(12):1507–18.

    Article  CAS  PubMed  Google Scholar 

  53. Duncombe AS, Lees AJ. Methysergide in progressive supranuclear palsy. Neurology. 1985;35(6):936–7.

    Article  CAS  PubMed  Google Scholar 

  54. Schneider LS, Gleason RP, Chui HC. Progressive supranuclear palsy with agitation: response to trazodone but not to thiothixine or carbamazepine. J Geriatr Psychiatry Neurol. 1989;2(2):109–12.

    Article  CAS  PubMed  Google Scholar 

  55. Di Trapani G, Stampatore P, La Cara A, Azzoni A, Vaccario ML. Treatment of progressive supranuclear palsy with methysergide. A clinical study. Ital J Neurol Sci. 1991;12(2):157–61.

    Article  PubMed  Google Scholar 

  56. Watanabe H, Arahata Y, Tadokoro M, Kato T, Sobue G. Effects of tandospirone citrate on frozen gait in patients with early stage of progressive supranuclear palsy, investigated by walk-induced activation single photon emission computed tomography method. Rinsho Shinkeigaku. 2000;40(11):1130–2.

    CAS  PubMed  Google Scholar 

  57. Fujino Y, Nakajima M, Tsuboi Y, Baba Y, Yamada T. Clinical effectiveness of tandospirone citrate (5-HT1A agonist) on patients with progressive supranuclear palsy. Rinsho Shinkeigaku. 2002;42(1):42–4.

    PubMed  Google Scholar 

  58. Miyaoka T, Seno H, Inagaki T, Horiguchi J. Fluvoxamine for the treatment of depression and parkinsonism in progressive supranuclear palsy. Int J Psychiatry Clin Pract. 2002;6(1):45–7.

    Article  CAS  PubMed  Google Scholar 

  59. Ghika J, Tennis M, Hoffman E, Schoenfeld D, Growdon J. Idazoxan treatment in progressive supranuclear palsy. Neurology. 1991;41(7):986–91.

    Article  CAS  PubMed  Google Scholar 

  60. Rascol O, Sieradzan K, Peyro-Saint-Paul H, Thalamas C, Brefel-Courbon C, Senard JM, et al. Efaroxan, an alpha-2 antagonist, in the treatment of progressive supranuclear palsy. Mov Disord. 1998;13(4):673–6.

    Article  CAS  PubMed  Google Scholar 

  61. Newman GC. Treatment of progressive supranuclear palsy with tricyclic antidepressants. Neurology. 1985;35:1189–93.

    Article  CAS  PubMed  Google Scholar 

  62. Frattali CM, Sonies BC, Chi-Fishman G, Litvan I. Effects of physostigmine on swallowing and oral motor functions in patients with progressive supranuclear palsy: a pilot study. Dysphagia. 1999;14(3):165–8.

    Article  CAS  PubMed  Google Scholar 

  63. Fabbrini G, Barbanti P, Bonifati V, Colosimo C, Gasparini M, Vanacore N, et al. Donepezil in the treatment of progressive supranuclear palsy. Acta Neurol Scand. 2001;103(2):123–5.

    Article  CAS  PubMed  Google Scholar 

  64. Litvan I, Phipps M, Pharr VL, Hallett M, Grafman J, Salazar A. Randomized placebo-controlled trial of donepezil in patients with progressive supranuclear palsy. Neurology. 2001;57(3):467–73.

    Article  CAS  PubMed  Google Scholar 

  65. Liepelt I, Gaenslen A, Godau J, Di Santo A, Schweitzer KJ, Gasser T, et al. Rivastigmine for the treatment of dementia in patients with progressive supranuclear palsy: clinical observations as a basis for power calculations and safety analysis. Alzheimers Dement. 2010;6(1):70–4.

    Article  CAS  PubMed  Google Scholar 

  66. Levy R, Ruberg M, Herrero MT, Villares J, Javoy-Agid F, Agid Y, et al. Alterations of GABAergic neurons in the basal ganglia of patients with progressive supranuclear palsy: an in situ hybridization study of GAD67 messenger RNA. Neurology. 1995;45(1):127–34.

    Article  CAS  PubMed  Google Scholar 

  67. Daniele A, Moro E, Bentivoglio AR. Zolpidem in progressive supranuclear palsy. N Engl J Med. 1999;341(7):543–4.

    Article  CAS  PubMed  Google Scholar 

  68. Poujois A, Vidailhet M, Trocello JM, Bourdain F, Gaymard B, Rivaud-Pechoux S. Effect of gabapentin on oculomotor control and parkinsonism in patients with progressive supranuclear palsy. Eur J Neurol. 2007;14(9):1060–2.

    Article  CAS  PubMed  Google Scholar 

  69. Polo KB, Jabbari B. Botulinum toxin-A improves the rigidity of progressive supranuclear palsy. Ann Neurol. 1994;35(2):237–9.

    Article  CAS  PubMed  Google Scholar 

  70. Piccione F, Mancini E, Tonin P, Bizzarini M. Botulinum toxin treatment of apraxia of eyelid opening in progressive supranuclear palsy: report of two cases. Arch Phys Med Rehabil. 1997;78(5):525–9.

    Article  CAS  PubMed  Google Scholar 

  71. Lepore V, Defazio G, Acquistapace D, Melpignano C, Pomes L, Lamberti P, et al. Botulinum A toxin for the so-called apraxia of lid opening. Mov Disord. 1995;10(4):525–6.

    Article  CAS  PubMed  Google Scholar 

  72. Krack P, Marion MH. “Apraxia of lid opening,” a focal eyelid dystonia: clinical study of 32 patients. Mov Disord. 1994;9(6):610–5.

    Article  CAS  PubMed  Google Scholar 

  73. Gómez-Caravaca MT, Cáceres-Redondo MT, Huertas-Fernández I, Vargas-González L, Carrillo F, Carballo M, Mir P. The use of botulinum toxin in the treatment of sialorrhea in parkinsonian disorders. Neurol Sci. 2015;36(2):275–9.

    Article  PubMed  Google Scholar 

  74. Bergmann KJ, Salak VL. Subthalamic stimulation improves levodopa responsive symptoms in a case of progressive supranuclear palsy. Parkinsonism Relat Disord. 2008;14(4):348–52.

    Article  PubMed  Google Scholar 

  75. Doshi PK, Desai JD, Karkera B, Wadia PM. Bilateral pedunculopontine nucleus stimulation for progressive supranuclear palsy. Stereotact Funct Neurosurg. 2015;93(1):59–65.

    Article  PubMed  Google Scholar 

  76. Bensimon G, Ludolph A, Agid Y, Vidailhet M, Payan C, Leigh PN, NNIPPS Study Group. Riluzole treatment, survival and diagnostic criteria in Parkinson plus disorders: the NNIPPS study. Brain. 2009;132(Pt 1):156–71.

    PubMed  Google Scholar 

  77. Leclair-Visonneau L, Rouaud T, Debilly B, Durif F, Houeto JL, Kreisler A, et al. Randomized placebo-controlled trial of sodium valproate in progressive supranuclear palsy. Clin Neurol Neurosurg. 2016;146:35–9.

    Article  PubMed  Google Scholar 

  78. Höglinger GU, Huppertz HJ, Wagenpfeil S, Andres MV, Belloch V, Leon T, et al. Tideglusib reduces progression of brain atrophy in progressive supranuclear palsy in a randomized trial. Mov Disord. 2014;29(4):479–87.

    Article  PubMed  Google Scholar 

  79. Albers DS, Beal MF. Mitochondrial dysfunction in progressive supranuclear palsy. Neurochem Int. 2002;40(6):559–64.

    Article  CAS  PubMed  Google Scholar 

  80. Di Monte DA, Harati Y, Jankovic J, Sandy MS, Jewell SA, Langston JW. Muscle mitochondrial ATP production in progressive supranuclear palsy. J Neurochem. 1994;62(4):1631–4.

    Article  PubMed  Google Scholar 

  81. Albers DS, Swerdlow RH, Manfredi G, Gajewski C, Yang L, Parker WD Jr, et al. Further evidence for mitochondrial dysfunction in progressive supranuclear palsy. Exp Neurol. 2001;168(1):196–8.

    Article  CAS  PubMed  Google Scholar 

  82. Park LC, Albers DS, Xu H, Lindsay JG, Beal MF, Gibson GE. Mitochondrial impairment in the cerebellum of the patients with progressive supranuclear palsy. J Neurosci Res. 2001;66(5):1028–34.

    Article  CAS  PubMed  Google Scholar 

  83. Swerdlow RH, Golbe LI, Parks JK, Cassarino DS, Binder DR, Grawey AE, et al. Mitochondrial dysfunction in cybrid lines expressing mitochondrial genes from patients with progressive supranuclear palsy. J Neurochem. 2000;75(4):1681–4.

    Article  CAS  PubMed  Google Scholar 

  84. Stamelou M, Pilatus U, Reuss A, Magerkurth J, Eggert KM, Knake S, et al. In vivo evidence for cerebral depletion in high-energy phosphates in progressive supranuclear palsy. J Cereb Blood Flow Metab. 2009;29(4):861–70.

    Article  CAS  PubMed  Google Scholar 

  85. Stamelou M, Reuss A, Pilatus U, Magerkurth J, Niklowitz P, Eggert KM, et al. Short-term effects of coenzyme Q10 in progressive supranuclear palsy: a randomized, placebo-controlled trial. Mov Disord. 2008;23(7):942–9.

    Article  PubMed  Google Scholar 

  86. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol. 2009;11(7):909–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Clavaguera F, Akatsu H, Fraser G, Crowther RA, Frank S, Hench J, et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci. 2013;110(23):9535–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Clavaguera F, Grueninger F, Tolnay M. Intercellular transfer of tau aggregates and spreading of tau pathology: Implications for therapeutic strategies. Neuropharmacology. 2014;76 Pt A:9–15.

  89. Asuni AA, Boutajangout A, Scholtzova H, Knudsen E, Li YS, Quartermain D, et al. Vaccination of Alzheimer’s model mice with Abeta derivative in alum adjuvant reduces Abeta burden without microhemorrhages. Eur J Neurosci. 2006;24(9):2530–42.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci. 2007;27(34):9115–29.

    Article  CAS  PubMed  Google Scholar 

  91. Wisniewski T, Boutajangout A. Vaccination as a therapeutic approach to Alzheimer’s disease. Mt Sinai J Med. 2010;77(1):17–31.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Boutajangout A, Ingadottir J, Davies P, Sigurdsson EM. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J Neurochem. 2011;118(4):658–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chai X, Wu S, Murray TK, Kinley R, Cella CV, Sims H, et al. Passive immunization with anti-Tau antibodies in two transgenic models: reduction of Tau pathology and delay of disease progression. J Biol Chem. 2011;286(39):34457–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Boutajangout A, Wisniewski T. Tau-based therapeutic approaches for Alzheimer’s disease: a mini-review. Gerontology. 2014;60(5):381–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gotkine M, Rozenstein L, Einstein O, Abramsky O, Argov Z, Rosenmann H. Presymptomatic treatment with acetylcholinesterase antisense oligonucleotides prolongs survival in ALS (G93A-SOD1) mice. Biomed Res Int. 2013;2013:845345.

    PubMed  Google Scholar 

  96. Riboldi G, Zanetta C, Ranieri M, Nizzardo M, Simone C, Magri F, et al. Antisense oligonucleotide therapy for the treatment of C9ORF72 ALS/FTD diseases. Mol Neurobiol. 2014;50(3):721–32.

    Article  CAS  PubMed  Google Scholar 

  97. Xu H, Rosler TW, Carlsson T, de Andrade A, Fiala O, Hollerhage M, et al. Tau Silencing by siRNA in the P301S Mouse model of Tauopathy. Curr Gene Ther. 2014;14(5):343–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Stamelou.

Ethics declarations

Funding

No funding was received for the publication of this review.

Conflict of interest

Dr. Maria Stamelou and Professor Günter Höglinger have participated in clinical trials evaluating davunetide (Allon Therapeutics Inc.), tideglusib (Noscira Inc.), and co-enzyme Q10 (MSE Pharmazeutika) in PSP.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stamelou, M., Höglinger, G. A Review of Treatment Options for Progressive Supranuclear Palsy. CNS Drugs 30, 629–636 (2016). https://doi.org/10.1007/s40263-016-0347-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-016-0347-2

Keywords

Navigation