Skip to main content
Log in

An Examination and Critique of Subjective Methods to Determine Exercise Intensity: The Talk Test, Feeling Scale, and Rating of Perceived Exertion

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Prescribing exercise intensity is crucial in achieving an adequate training stimulus. While numerous objective methods exist and are used in practical settings for exercise intensity prescription, they all require anchor measurements that are derived from a maximal or submaximal graded exercise test or a series of submaximal or supramaximal exercise bouts. Conversely, self-reported subjective methods such as the Talk Test (TT), Feeling Scale (FS) affect rating, and rating of perceived exertion (RPE) do not require exercise testing prior to commencement of the exercise training and therefore appear as more practical tools for exercise intensity prescription. This review is intended to provide basic information on reliability and construct validity of the TT, FS, and RPE measurements to delineate intensity domains. The TT and RPE appear to be valid measures of both the ventilatory threshold and the respiratory compensation threshold. Although not specifically examined, the FS showed tendency to demarcate ventilatory threshold, but its validity to demarcate the respiratory compensation threshold is limited. Equivocal stage of the TT, RPE of 10–11, and FS ratings between fairly good (+ 1) and good (+ 3) are reflective of the ventilatory threshold, while negative stage of the TT, RPE of 13–15, and FS ratings around neutral (0) are reflective of the respiratory compensation threshold. The TT and RPE can effectively be used to elicit homeostatic disturbances consistent with the moderate, heavy, and severe intensity domains, while physiological responses to constant FS ratings show extensive variability around ventilatory threshold to be considered effective in demarcating transition between moderate and heavy intensity domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Impellizzeri FM, Marcora SM, Coutts AJ. Internal and external training load: 15 years on. Int J Sports Physiol Perform. 2019;14(2):270–3.

    Article  PubMed  Google Scholar 

  2. Karvonen MJ, Kentala E, Mustala O. The effects of training on heart rate; a longitudinal study. Ann Med Exp Biol Fen. 1957;35(3):307–15.

    CAS  Google Scholar 

  3. Seiler S. What is the best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010;5:276–91.

    Article  PubMed  Google Scholar 

  4. Esteve-Lanao J, San Juan AF, Earnest CP, Foster C, Lucia A. How do endurance runners actually train? Relationship with competition performance. Med Sci Sports Exerc. 2005;37(3):496–504.

    Article  PubMed  Google Scholar 

  5. Foster C, Anholm JD, Bok D, Boullosa D, Condello G, Cortis C, et al. Generalized approach to translating exercise tests and prescribing exercise. J Funct Morphol Kinesiol. 2020;5(3):63. https://doi.org/10.3390/jfmk5030063.

    Article  PubMed Central  Google Scholar 

  6. Tyrrell T, Pavlock J, Bramwell S, Cortis C, Doberstein ST, Fusco A, et al. Functional translation of exercise responses from exercise testing to exercise training: the test of a model. J Funct Morphol Kinesiol. 2021;6:66. https://doi.org/10.3390/jfmk6030066.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Katch V, Weltman A, Sady S, Freedson P. Validity of relative percent concept for equating training intensity. Eur J Appl Physiol. 1978;39(4):219–27.

    Article  CAS  Google Scholar 

  8. ACSM. ACSM’s guidelines for exercise testing and prescription. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 2017.

  9. Scharhag-Rosenberger F, Meyer T, Gassler N, Faude O, Kindermann W. Exercise at given percentages of VO2max: heterogeneous metabolic response between individuals. J Sci Med Sport. 2010;13(1):74–9.

    Article  PubMed  Google Scholar 

  10. Mann T, Lamberts RP, Lambert MI. Methods of prescribing relative exercise intensity: physiological and practical considerations. Sports Med. 2013;43(7):613–25.

    Article  PubMed  Google Scholar 

  11. Mezzani A, Hamm LF, Jones AM, McBride PE, Moholdt T, Stone JA, et al. Aerobic exercise intensity assessment and prescription in cardiac rehabilitation: a joint position statement of the European Association for Cardiovascular Prevention and Rehabilitation, the American Association of Cardiovascular and Pulmonary Rehabilitation and the Canadian Association of Cardiac Rehabilitation. Eur J Prev Cardiol. 2012;20(3):442–67.

    Article  PubMed  Google Scholar 

  12. Jones AM, Burnley M, Black MI, Poole DC, Vanhatalo A. The maximal metabolic steady state: redefining the ‘gold standard.’ Physiol Rep. 2019;7(10): e14098.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Poole DC, Rossiter HB, Brooks GA, Gladden LB. The anaerobic threshold: 50+ years of controversy. J Physiol. 2021;599(3):737–67.

    Article  CAS  PubMed  Google Scholar 

  14. Jamnick NA, Pettitt RW, Granata C, Pyne DB, Bishop DJ. An examination and critique of current methods to determine exercise intensity. Sports Med. 2020;50(10):1729–56.

    Article  PubMed  Google Scholar 

  15. Meyer T, Lucía A, Earnest CP, Kindermann W. A conceptual framework for performance diagnosis and training prescription from submaximal parameters: theory and application. Int J Sports Med. 2005;26(Suppl. 1):S38-48.

    Article  PubMed  Google Scholar 

  16. Foster C, Porcari JP, Ault S, Doro K, Dubiel J, Engen M, et al. Exercise prescription when there is no exercise test: the talk test. Kinesiol. 2018;50(Suppl. 1):33–48.

    Google Scholar 

  17. Eston R. Use of ratings of perceived exertion in sports. Int J Sports Physiol Perform. 2012;7(2):175–82.

    Article  PubMed  Google Scholar 

  18. Ekkekakis P, Parfitt G, Petruzzello SJ. The pleasure and displeasure people feel when they exercise at different intensities: decennial update and progress towards a tripartite rationale for exercise prescription. Sports Med. 2011;41(8):641–71.

    Article  PubMed  Google Scholar 

  19. Rodriguez-Marroyo JA, Villa JG, Pernia R, Foster C. Decrement in professional cyclists’ performance after a grand tour. Int J Sports Physiol Perform. 2017;12:1348–55.

    Article  PubMed  Google Scholar 

  20. Voelker SA, Foster C, Porcari JP, Skemp KM, Brice G, Backes R. Relationship between the talk test and ventilatory threshold in cardiac patients. Clin Exerc Physiol. 2002;4(2):120–3.

    Google Scholar 

  21. Zanettini R, Centeleghe P, Franzelli C, Mori I, Benna S, Penati C, et al. Validity of the Talk Test for exercise prescription after myocardial revascularization. Eur J Prev Cardiol. 2012;20(2):376–82.

    Article  PubMed  Google Scholar 

  22. Parfitt G, Evans H, Eston R. Perceptually regulated training at RPE13 is pleasant and improves physical health. Med Sci Sports Exerc. 2012;44(8):1613–8.

    Article  PubMed  Google Scholar 

  23. Porcari JP, Falck-Wiese K, Suckow-Stenger S, Turek J, Wargowski A, Cress ML, et al. Comparison of the Talk Test and percent heart rate reserve for exercise prescription. Kinesiol. 2018;50(1):3–10.

    Article  Google Scholar 

  24. Parfitt G, Alrumh A, Rowlands AV. Affect-regulated exercise intensity: does training at an intensity that feels ‘good’ improve physical health? J Sci Med Sport. 2012;15(6):548–53.

    Article  PubMed  Google Scholar 

  25. Goode RC. A personal insight into the origin of the “Talk Test.” Health Fit J Can. 2008;1:5–8.

    Google Scholar 

  26. Goode RC, Mertens R, Shaiman S, Mertens J. Voice, breathing, and the control of exercise intensity. In: Hughson RL, Cunningham DA, Duffin J, editors. Advances in modeling and control of ventilation. Boston: Springer; 1998. p. 223–9.

    Chapter  Google Scholar 

  27. Norman JF, Kracl J, Parker D, Richter A. Comparison of the counting talk test and heart rate reserve methods for estimating exercise intensity in healthy young adults. J Exerc Physiol. 2001;4(4):15–22.

    Google Scholar 

  28. Norman JF, Hopkins E, Crapo E. Validity of the counting talk test in comparison with standard methods of estimating exercise intensity in young healthy adults. J Cardiopulm Rehabil Prev. 2008;28(3):199–202.

    Article  PubMed  Google Scholar 

  29. Orizola-Cáceres I, Cerda-Kohler H, Burgos-Jara C, Menses-Valdes R, Gutierrez-Pino R, Sepúlveda C. Modified Talk Test: a randomized cross-over trial investigating the comparative utility of two “Talk Tests” for determining aerobic training zones in overweight and obese patients. Sports Med Open. 2021;7(1):23.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Meckel Y, Rotstein A, Inbar O. The effects of speech production on physiologic responses during submaximal exercise. Med Sci Sports Exerc. 2002;34(8):1337–43.

    Article  PubMed  Google Scholar 

  31. Creemers N, Foster C, Porcari JP, Cress ML, de Koning JJ. The physiological mechanism behind the talk test. Kinesiology. 2017;49(1):3–8.

    Article  Google Scholar 

  32. Wasserman K, Hansen JE, Sue DY, Stringer WW, Sietsema KE, Sun XG, et al. Principles of exercise testing and interpretation: including pathophysiology and clinical applications. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2012.

    Google Scholar 

  33. Dehart-Beverley M, Foster C, Porcari JP, Fater DCW, Mikat RP. Relationship between the talk test and ventilatory threshold. Clin Exerc Physiol. 2000;2:34–8.

    Google Scholar 

  34. Recalde PT, Foster C, Skemp-Arlt KM, Fater DCW, Neese CA, Dodge C, et al. The talk test as a simple marker of ventilatory threshold. S Afr J Sports Med. 2002;9(2):5–8.

    Google Scholar 

  35. Brawner CA, Vanzant MA, Ehrman JK, Foster C, Porcari JP, Kelso AJ, et al. Guiding exercise using the talk test among patients with coronary artery disease. J Cardiopulmon Rehabil. 2006;26(2):72–5.

    Article  Google Scholar 

  36. Schroeder MM, Foster C, Porcari JP, Mikat RP. Effects of speech passage length on accuracy of predicting metabolic thresholds using the talk test. Kinesiology. 2017;49(1):9–14.

    Article  Google Scholar 

  37. Ballweg J, Foster C, Porcari J, Haible S, Aminaka N, Mikat RP. Reliability of the talk test as a surrogate of ventilatory and respiratory compensation thresholds. J Sports Sci Med. 2013;12(3):610–1.

    PubMed  PubMed Central  Google Scholar 

  38. Jeans EA, Foster C, Porcari JP, Gibson M, Doberstein S. Translation of exercise testing to exercise prescription using the talk test. J Strength Cond Res. 2011;25(3):590–6.

    Article  PubMed  Google Scholar 

  39. Nielsen SG, Buus L, Hage T, Olsen H, Walsøe M, Vinther A. The graded cycling test combined with the talk test is reliable for patients with ischemic heart disease. J Cardiopulm Rehabil Prev. 2014;34(4):276–80.

    Article  PubMed  Google Scholar 

  40. Petersen AK, Maribo T, Hjortdal VE, Laustsen S. Intertester reliability of the talk test in a cardiac rehabilitation population. J Cardiopulm Rehabil Prev. 2014;34(1):49–53.

    Article  PubMed  Google Scholar 

  41. Reed JL, Pipe AL. The talk test: a useful tool for prescribing and monitoring exercise intensity. Curr Opin Cardiol. 2014;29(5):475–80.

    Article  PubMed  Google Scholar 

  42. Persinger R, Foster C, Gibson M, Fater DCW, Porcari JP. Consistency of the talk test for exercise prescription. Med Sci Sports Exerc. 2004;36(9):1632–6.

    PubMed  Google Scholar 

  43. Rodríguez-Marroyo JA, Villa JG, García-López J, Foster C. Relationship between the talk test and ventilatory thresholds in well-trained cyclists. J Strength Cond Res. 2013;27(7):1942–9.

    Article  PubMed  Google Scholar 

  44. Sørensen L, Larsen KSR, Petersen AK. Validity of the talk test as a method to estimate ventilatory threshold and guide exercise intensity in cardiac patients. J Cardiopulm Rehabil Prev. 2020;40(5):330–4.

    Article  PubMed  Google Scholar 

  45. Quinn TJ, Coons BA. The talk test and its relationship with the ventilatory and lactate thresholds. J Sports Sci. 2011;29(11):1175–82.

    Article  PubMed  Google Scholar 

  46. Gillespie BD, McCormick JJ, Mermier CM, Gibson AL. Talk test as a practical method to estimate exercise intensity in highly trained competitive male cyclists. J Strength Cond Res. 2015;29(4):894–8.

    Article  PubMed  Google Scholar 

  47. Alajmi RA, Foster C, Porcari JP, Radtke K, Doberstein S. Comparison of non-maximal tests for estimating exercise capacity. Kinesiology. 2020;52(1):10–8.

    Article  Google Scholar 

  48. Deal KM, Foster C, Jaime S, Mikat RP, Radtke K, Porcari JP. Can the Talk Test be used to predict training induced changes in ventilatory threshold? Kinesiology. 2020;52(2):163–8.

    Article  Google Scholar 

  49. Lyon E, Menke M, Foster C, Porcari JP, Gibson M, Bubbers T. Translation of incremental talk test responses to steady-state exercise training intensity. J Cardiopulm Rehabil Prev. 2014;34(4):271–5.

    Article  PubMed  Google Scholar 

  50. Foster C, Porcari JP, Gibson M, Wright G, Greany J, Talati N, et al. Translation of submaximal exercise test responses to exercise prescription using the talk test. J Strength Cond Res. 2009;23(9):2425–9.

    Article  PubMed  Google Scholar 

  51. Foster C, Porcari JP, de Koning JJ, Bannwarth E, Casolino E, Condello G, et al. Exercise training for performance and health. Dtsch Z Sportmed. 2012;63(3):69–74.

    Article  Google Scholar 

  52. Woltmann ML, Foster C, Porcari JP, Camic CL, Dodge C, Haible S, et al. Evidence that the talk test can be used to regulate exercise intensity. J Strength Cond Res. 2015;29(5):1248–54.

    Article  PubMed  Google Scholar 

  53. Ekkekakis P, Petruzzello SJ. Acute aerobic exercise and affect: current status, problems, and prospects regarding dose-response. Sports Med. 1999;28(5):337–74.

    Article  CAS  PubMed  Google Scholar 

  54. Ekkekakis P, Hall EE, Petruzzello SJ. Variation and homogeneity in affective responses to physical activity of varying intensities: an alternative perspective on dose-response based on evolutionary considerations. J Sports Sci. 2005;23(5):477–500.

    Article  PubMed  Google Scholar 

  55. Tempest G, Parfitt G. Self-reported tolerance influences prefrontal cortex hemodynamics and affective responses. Cogn Affect Behav Neurosci. 2016;16(1):63–71.

    Article  PubMed  Google Scholar 

  56. Rose EA, Parfitt G. Exercise experience influences affective and motivational outcomes of prescribed and self-selected intensity exercise. Scand J Med Sci Sports. 2012;22(2):265–77.

    Article  CAS  PubMed  Google Scholar 

  57. Rose EA, Parfitt G. A quantitative analysis qualitative explanation of the individual differences in affective responses to prescribed and self-selected exercise intensities. J Sport Exerc Psychol. 2007;29(3):281–309.

    Article  PubMed  Google Scholar 

  58. Tempest G, Parfitt G. Imagery use and affective responses during exercise: an examination of cerebral hemodynamics using near-infrared spectroscopy. J Sport Exerc Psychol. 2013;35(5):503–13.

    Article  PubMed  Google Scholar 

  59. Hardy CJ, Rejeski WJ. Not what, but how one feels: the measurement of affect during exercise. J Sport Exerc Psychol. 1989;11(3):304–17.

    Article  Google Scholar 

  60. Sheppard KE, Parfitt G. Patterning of physiological and affective responses during a graded exercise test in sedentary men and boys. J Exerc Sci Fit. 2008;6(2):121–9.

    Google Scholar 

  61. Benjamin CC, Rowlands A, Parfitt G. Patterning of affective responses during a graded exercise test in children and adolescents. Pediatr Exerc Sci. 2012;24(2):275–88.

    Article  PubMed  Google Scholar 

  62. Ekkekakis P, Lind E, Vazou S. Affective responses to increasing levels of exercise intensity in normal-weight, overweight, and obese middle-aged women. Obesity. 2010;18(1):79–85.

    Article  PubMed  Google Scholar 

  63. Hall EE, Ekkekakis P, Petruzzello SJ. The affective beneficence of vigurous exercise revisited. Br J Health Psychol. 2002;7(1):47–66.

    Article  PubMed  Google Scholar 

  64. Welch AS, Hulley A, Ferguson C, Beauchamp MR. Affective responses of inactive women to a maximal incremental exercise test: a test of the dual-mode model. Psychol Sport Exerc. 2007;8(4):401–23.

    Article  Google Scholar 

  65. Ekkekakis P, Hall EE, Petruzzello SJ. Practical markers of the transition from aerobic to anaerobic metabolism during exercise: rationale and a case for affect-based exercise prescription. Prev Med. 2004;38(2):149–59.

    Article  PubMed  Google Scholar 

  66. Smith AE, Eston R, Tempest GD, Norton B, Parfitt G. Patterning of physiological and affective responses in older active adults during a maximal graded exercise test and self-selected exercise. Eur J Appl Physiol. 2015;115(9):1855–66.

    Article  PubMed  Google Scholar 

  67. Schneider ML, Graham DJ. Personality, physical fitness, and affective response to exercise among adolescent. Med Sci Sports Exerc. 2009;41(4):947–55.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tempest GD, Eston RG, Parfitt G. Prefrontal cortex haemodynamics and affective responses during exercise: a multi-channel near infrared spectroscopy study. PLoS ONE. 2014;9(5): e95924.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Kilpatrick M, Kraemer R, Bartholomew J, Acevedo E, Jarreau D. Affective resposes to exercise are dependent on intensity rather than total work. Med Sci Sports Exerc. 2007;39(8):1417–22.

    Article  PubMed  Google Scholar 

  70. Stych K, Parfitt G. Exploring affective responses to different exercise intensities in low-active young adolescents. J Sport Exerc Psychol. 2011;33(4):548–68.

    Article  PubMed  Google Scholar 

  71. Sheppard KE, Parfitt G. Acute affective responses to prescribed and self-selected exercise intensities in young adolescent boys and girls. Pediatr Exerc Sci. 2008;20(2):129–41.

    Article  PubMed  Google Scholar 

  72. Ekkekakis P, Hall EE, Petruzzello SJ. The relationship between exercise intensity and affective responses demystified: to crack the 40-year-old nut, replace the 40-year-old nutcracker. Ann Behav Med. 2008;35(2):136–49.

    Article  PubMed  Google Scholar 

  73. Parfitt G, Rose EA, Burgess WM. The psychological and physiological responses of sedentary individuals to prescribed and preferred intensity exercise. Br J Health Psychol. 2006;11(1):39–53.

    Article  PubMed  Google Scholar 

  74. Ekkekakis P, Hall EE, Van Landuyt LM, Petruzzello SJ. Walking in (affective) circles: can short walks enhance effect? J Behav Med. 2000;23(3):245–75.

    Article  CAS  PubMed  Google Scholar 

  75. Acevedo EO, Kraemer RR, Haltom RW, Tryniecki JL. Perceptual responses proximal to the onset of blood lactate accumulation. J Sports Med Phys Fit. 2003;43(3):267–73.

    CAS  Google Scholar 

  76. Hartman ME, Ekkekakis P, Dicks ND, Pettitt RW. Dynamics of pleasure-displeasure at the limit of exercise tolerance: conceptualizing the sense of exertional physical fatigue as an affective response. J Exp Biol. 2019;222(3):jeb186585.

  77. Schneider M, Schmalbach P. Affective response to exercise and preferred exercise intensity among adolescents. J Phys Act Health. 2015;12(4):546–52.

    Article  PubMed  Google Scholar 

  78. Rose EA, Parfitt G. Can the feeling scale be used to regulate exercise intensity? Med Sci Sports Exerc. 2008;40(10):1852–60.

    Article  PubMed  Google Scholar 

  79. Hutchinson JC, Jones L, Vitti SN, Moore A, Dalton PC, O’Neil BJ. The influence of self-selected music on affect-regulated exercise intensity and remembered pleasure during treadmill running. Sport Exerc Perform Psychol. 2018;7(1):80–92.

    Google Scholar 

  80. Hamlyn-Williams C, Tempest G, Coombs S, Parfitt G. Can previously sedentary females use the feeling scale to regulate exercise intensity in a gym environment? An observational study. BMC Sports Sci Med Rehabil. 2015;7:30.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Parfitt G, Blisset A, Rose EA, Eston R. Physiological and perceptual responses to affect-regulated exercise in healthy young women. Psychophysiology. 2012;49(1):104–10.

    Article  PubMed  Google Scholar 

  82. Deci EL, Ryan RM. The support of autonomy and the control of behaviour. J Pers Soc Psychol. 1987;53(6):1024–37.

    Article  CAS  PubMed  Google Scholar 

  83. Oliveira BRR, Deslandes AC, Santos TM. Differences in exercise intensity seems to influence the affective responses in self-selected and imposed exercise: a meta-analysis. Front Psychol. 2015;6:1105.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lind E, Joens-Matre RR, Ekkekakis P. What intensity of physical activity do previously sedentary middle-aged women select? Evidence of a coherent pattern from physiological, perceptual, and affective markers. Prev Med. 2005;40(4):407–19.

    Article  PubMed  Google Scholar 

  85. Hamlyn-Williams C, Freeman P, Parfitt G. Acute affective responses to prescribed and self-selected exercise sessions in adolescent girls: an observational study. BMC Sports Sci Med Rehabil. 2014;6:35.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Oliveira BRR, Deslandes AC, Nakamura FY, Viana BF, Santos TM. Self-selected or imposed exercise? A different approach for affective comparisons. J Sports Sci. 2015;33(8):777–85.

    Article  PubMed  Google Scholar 

  87. Borg G, Dahlström H. Psykofysisk undersökning av arbete på cykelergometer. Nord Med. 1959;62:1383–6.

    CAS  PubMed  Google Scholar 

  88. Borg G, Dahlström H. The perception of muscular work. Umefi Vetensk Bibl Skrifts. 1960;5:1–26.

    Google Scholar 

  89. Borg G, Hassmén P, Lagerström M. Perceived exertion related to heart rate and blood lactate during arm and leg exercise. Eur J Appl Physiol Occup Physiol. 1987;56(6):679–85.

    Article  CAS  PubMed  Google Scholar 

  90. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–81.

    Article  CAS  PubMed  Google Scholar 

  91. Ekblom B, Goldbarg AN. The influence of physical training and other factors on the subjective rating of perceived exertion. Acta Physiol Scand. 1971;83(3):399–406.

    Article  CAS  PubMed  Google Scholar 

  92. Noble BJ, Borg GA, Jacobs I, Ceci R, Kaiser P. A category-ratio perceived exertion scale: relationship to blood and muscle lactates and heart rate. Med Sci Sports Exerc. 1983;15(6):523–8.

    Article  CAS  PubMed  Google Scholar 

  93. Birk TJ, Birk CA. Use of ratings of perceived exertion for exercise prescription. Sports Med. 1987;4(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  94. Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2(2):92–8.

    CAS  PubMed  Google Scholar 

  95. Borg GA. Perceived exertion: a note on “history” and methods. Med Sci Sports. 1973;5(2):90–3.

    CAS  PubMed  Google Scholar 

  96. Arney BE, Glover R, Fusco A, Cortis C, de Koning JJ, van Erp T, et al. Comparison of rating of perceived exertion scales during incremental and interval exercise. Kinesiology. 2019;51(2):150–7.

    Article  Google Scholar 

  97. Arney BE, Glover R, Fusco A, Cortis C, de Koning JJ, van Erp T, et al. Comparison of RPE (rating of perceived exertion) scales for session RPE. Int J Sports Physiol Perform. 2019;14(7):994–6.

    Article  PubMed  Google Scholar 

  98. Faulkner J, Parfitt G, Eston R. Prediction of maximal oxygen uptake from the ratings of perceived exertion and heart rate during a perceptually-regulated sub-maximal exercise test in active and sedentary participants. Eur J Appl Physiol. 2007;101(3):397–407.

    Article  PubMed  Google Scholar 

  99. Pollock ML, Foster C, Rod JL, Wible G. Comparison of methods for determining exercise training intensity for cardiac patients and healthy adults. Adv Cardiol. 1982;31:129–33.

    Article  CAS  PubMed  Google Scholar 

  100. Groslambert A, Mahon AD. Perceived exertion: influence of age and cognitive development. Sports Med. 2006;36(11):911–28.

    Article  PubMed  Google Scholar 

  101. Kang J, Chaloupka EC, Biren GB, Mastrangelo MA, Hoffman JR. Regulating intensity using perceived exertion: effect of exercise duration. Eur J Appl Physiol. 2009;105(3):445–51.

    Article  PubMed  Google Scholar 

  102. Steed J, Gaesser GA, Weltman A. Rating of perceived exertion and blood lactate concentration during submaximal running. Med Sci Sports Exerc. 1994;26(6):797–803.

    Article  CAS  PubMed  Google Scholar 

  103. Borg GA. Borg’s perceived exertion and pain scales. Champaign: Human Kinetics; 1998.

  104. Scherr J, Wolfarth B, Christle JW, Pressler A, Wagenpfeil S, Halle M. Associations between Borg’s rating of perceived exertion and physiological measures of exercise intensity. Eur J Appl Physiol. 2013;113(1):147–55.

    Article  PubMed  Google Scholar 

  105. Faulkner J, Eston R. Overall and peripheral ratings of perceived exertion during a graded exercise test to volitional exhaustion in individuals of high and low fitness. Eur J Appl Physiol. 2007;101(5):613–20.

    Article  PubMed  Google Scholar 

  106. Mihevic PM. Sensory cues for perceived exertion: a review. Med Sci Sports Exerc. 1981;13(3):150–63.

    Article  CAS  PubMed  Google Scholar 

  107. Hampson DB, St Clair Gibson A, Lambert MI, Noakes TD. The influence of sensory cues on the perception of exertion during exercise and central regulation of exercise performance. Sports Med. 2001;31(13):935–52.

  108. Skinner JS, Hutsler R, Bergsteinová V, Buskirk ER. Perception of effort during different types of exercise and under different environmental conditions. Med Sci Sports. 1973;5(2):110–5.

    CAS  PubMed  Google Scholar 

  109. Chen MJ, Fan X, Moe ST. Criterion-related validity of the Borg ratings of perceived exertion scale in healthy individuals: a meta-analysis. J Sports Sci. 2002;20(11):873–99.

    Article  PubMed  Google Scholar 

  110. Losnegard T, Skarli S, Hansen J, Roterud S, Svendsen IS, Rønnestad BR, et al. Is rating of perceived exertion a valuable tool for monitoring exercise intensity during steady-state conditions in elite endurance athletes? Int J Sports Physiol Perform. 2021;16(11):1589–95. https://doi.org/10.1123/ijspp.2020-0866.

    Article  PubMed  Google Scholar 

  111. Kasai D, Parfitt G, Tarca B, Eston R, Tsiros MD. The use of ratings of perceived exertion in children and adolescents: a scoping review. Sports Med. 2021;51(1):33–50.

    Article  PubMed  Google Scholar 

  112. Lamb K, Parfitt G, Eston R. Effort perception. In: Armstrong N, Van Mechelen W, editors. Oxford textbook of children’s sport and exercise medicine. 3rd ed. Oxford: Oxford University Press; 2017.

  113. Eston RG, Parfitt G. Perceived exertion, heart rate and other non-invasive methods for exercise testing and intensity control. In: Norton K, Eston R, editors. Kinanthropometry and exercise physiology. 4th edn. London: Routledge; 2018.

  114. Eston RG, Lamb KL, Bain A, Williams AM, Williams JG. Validity of a perceived exertion scale for children: a pilot study. Percept Mot Skills. 1994;78(2):691–7.

    Article  CAS  PubMed  Google Scholar 

  115. Williams JG, Eston R, Furlong B. CERT: a perceived exertion scale for young children. Percept Mot Skills. 1994;79(3 Pt 2):1451–8.

    Article  CAS  PubMed  Google Scholar 

  116. Yelling M, Lamb KL, Swaine IL. Validity of a pictorial perceived exertion scale for effort estimation and effort production during stepping exercise in adolescent children. Eur Phys Educ Rev. 2002;8(2):157–75.

    Article  Google Scholar 

  117. Eston RG, Parfitt G, Campbell L, Lamb KL. Reliability of effort perception for regulating exercise intensity in children using the Cart and Load Effort Rating (CALER) Scale. Pediatr Exerc Sci. 2000;12:388–97.

    Article  Google Scholar 

  118. Parfitt G, Shepherd P, Eston RG. Reliability of effort production using the Children’s CALER and BABE perceived exertion scales. J Exerc Sci Fit. 2007;5(1):49–55.

    Google Scholar 

  119. Robertson RJ, Goss FL, Boer NF, Peoples JA, Foreman AJ, Dabayebeh IM, et al. Children’s OMNI scale of perceived exertion: mixed gender and race validation. Med Sci Sports Exerc. 2000;32(2):452–8.

    Article  CAS  PubMed  Google Scholar 

  120. Eston RG, Lambrick DM, Rowlands AV. The perceptual response to exercise of progressively increasing intensity in children aged 7–8 years: validation of a pictorial curvilinear ratings of perceived exertion scale. Psychophysiology. 2009;46(4):843–51.

    Article  PubMed  Google Scholar 

  121. Groslambert A, Hintzy F, Hoffman MD, Dugué B, Rouillon JD. Validation of a rating scale of perceived exertion in young children. Int J Sports Med. 2001;22(2):116–9.

    Article  CAS  PubMed  Google Scholar 

  122. Lamb KL. Children’s ratings of effort during cycle ergometry: an examination of the validity of two effort rating scales. Pediatr Exerc Sci. 1995;7:407–21.

    Article  Google Scholar 

  123. Pfeiffer KA, Pivarnik JM, Womack CJ, Reeves MJ, Malina RM. Reliability and validity of the Borg and OMNI rating of perceived exertion scales in adolescent girls. Med Sci Sports Exerc. 2002;34(12):2057–61.

    Article  PubMed  Google Scholar 

  124. Utter AC, Robertson RJ, Nieman DC, Kang J. Children’s OMNI scale of perceived exertion: walking/running evaluation. Med Sci Sports Exerc. 2002;34(1):139–44.

    Article  PubMed  Google Scholar 

  125. Barkley JE, Roemmich JN. Validity of the CALER and OMNI-bike ratings of perceived exertion. Med Sci Sports Exerc. 2008;40(4):760–6.

    Article  PubMed  Google Scholar 

  126. Roemmich JN, Barkley JE, Epstein LH, Lobarinas CL, White TM, Foster JH. Validity of PCERT and OMNI walk/run ratings of perceived exertion. Med Sci Sports Exerc. 2006;38(5):1014–9.

    Article  PubMed  Google Scholar 

  127. Rodríguez I, Zambrano L, Manterola C. Criterion-related validity of perceived exertion scales in healthy children: a systematic review and meta-analysis. Arch Argent Pediatr. 2016;114(2):120–8.

    PubMed  Google Scholar 

  128. Gammon C, Pfeiffer KA, Pivarnik JM, Moore RW, Rice KR, Trost SG. Age-related differences in OMNI-RPE scale validity in youth: a longitudinal analysis. Med Sci Sports Exerc. 2016;48(8):1590–4.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Stamford BA. Validity and reliability of subjective ratings of perceived exertion during work. Ergonomics. 1976;19(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  130. Lamb KL, Eston RG, Corns D. Reliability of ratings of perceived exertion during progressive treadmill exercise. Br J Sports Med. 1999;33(5):336–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hetzler RK, Seip RL, Boutcher SH, Pierce E, Snead D, Weltman A. Effect of exercise modality on ratings of perceived exertion at various lactate concentrations. Med Sci Sports Exerc. 1991;23(1):88–92.

    Article  CAS  PubMed  Google Scholar 

  132. Demello JJ, Cureton KJ, Boineau RE, Singh MM. Ratings of perceived exertion at the lactate threshold in trained and untrained men and women. Med Sci Sports Exerc. 1987;19(4):354–62.

    Article  CAS  PubMed  Google Scholar 

  133. Boutcher SH, Seip RL, Hetzler RK, Pierce EF, Snead D, Weltman A. The effects of specificity of training on rating of perceived exertion at the lactate threshold. Eur J Appl Physiol Occup Physiol. 1989;59(5):365–9.

    Article  CAS  PubMed  Google Scholar 

  134. Madrid B, Pires FO, Prestes J, César Leite Vieira D, Clark T, Tiozzo E, et al. Estimation of the maximal lactate steady state intensity by the rating of perceived exertion. Percept Mot Skills. 2016;122(1):136–49.

  135. Mahon AD, Marsh ML. Reliability of the rating of perceived exertion at ventilatory threshold in children. Int J Sports Med. 1992;13(8):567–71.

    Article  CAS  PubMed  Google Scholar 

  136. Gillach MC, Sallis JF, Buono MJ, Patterson P, Nader PR. The relationship between perceived exertion and heart rate in children and adults. Pediatr Exerc Sci. 1989;1:360–8.

    Article  Google Scholar 

  137. Ceci R, Hassmén P. Self-monitored exercise at three different RPE intensities in treadmill vs field running. Med Sci Sports Exerc. 1991;23(6):732–8.

    Article  CAS  PubMed  Google Scholar 

  138. Dunbar CC, Robertson RJ, Baun R, Blandin MF, Metz K, Burdett R, et al. The validity of regulating exercise intensity by ratings of perceived exertion. Med Sci Sports Exerc. 1992;24(1):94–9.

    Article  CAS  PubMed  Google Scholar 

  139. Morgan WP. Psychophysiology of self-awareness during vigorous physical activity. Res Q Exerc Sport. 1981;52:385–427.

    Article  CAS  PubMed  Google Scholar 

  140. Cochrane KC, Housh TJ, Hill EC, Smith CM, Jenkins NDM, Cramer JT, et al. Physiological responses underlying the perception of effort during moderate and heavy intensity cycle ergometry. Sports. 2015;3:369–82.

    Article  Google Scholar 

  141. Cochrane-Snyman KC, Housh TJ, Smith CM, Hill EC, Jenkins NDM. Treadmill running using an RPE-clamp model: mediators of perception and implications for exercise prescription. Eur J Appl Physiol. 2019;119(9):2083–94.

    Article  PubMed  Google Scholar 

  142. Stoudemire NM, Wideman L, Pass KA, McGinnes CL, Gaesser GA, Weltman A. The validity of regulating blood lactate concentration during running by ratings of perceived exertion. Med Sci Sports Exerc. 1996;28(4):490–5.

    Article  CAS  PubMed  Google Scholar 

  143. Dunbar CC, Goris C, Michielli DW, Kalinski MI. Accuracy and reproducibility of an exercise prescription based on ratings of perceived exertion for treadmill and cycle ergometer exercise. Percept Mot Skills. 1994;78:1335–44.

    Article  CAS  PubMed  Google Scholar 

  144. Tucker R, Marle T, Lambert EV, Noakes TD. The rate of heat storage mediates an anticipatory reduction in exercise intensity during cycling at a fixed rating of perceived exertion. J Physiol. 2006;574(Pt 3):905–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Joo KC, Brubaker PH, MacDougall A, Saikin AM, Ross JH, Whaley MH. Exercise prescription using resting heart rate plus 20 or perceived exertion in cardiac rehabilitation. J Cardiopulm Rehabil. 2004;24(3):178–84.

    Article  PubMed  Google Scholar 

  146. Whaley MH, Brubaker PH, Kaminsky LA, et al. Validity of the rating of perceived exertion during graded exercise testing in apparently healthy adults and cardiac patients. J Cardiopulm Rehabil. 1997;17(4):261–7.

    Article  CAS  PubMed  Google Scholar 

  147. Hansen D, Stevens A, Eijnde OB, Dendale P. Endurance exercise intensity determination in the rehabilitation of coronary artery disease patients: a critical re-appraisal of current evidence. Sports Med. 2012;42(1):11–30.

    Article  PubMed  Google Scholar 

  148. Gondoni LA, Nibbio F, Caetini G, et al. What are we measuring? Considerations on subjective ratings of perceived exertion in obese patients for exercise prescription in cardiac rehabilitation programs. Int J Cardiol. 2010;140(2):236–8.

    Article  PubMed  Google Scholar 

  149. Erichsen JM, Dykstra BJ, Hidde MC, Mahon AD. Ratings of perceived exertion and physiological responses in children during exercise. Int J Sports Med. 2017;38(12):897–901.

    Article  PubMed  Google Scholar 

  150. Chung PK, Leung RW, Liu JD, Quach B, Zhao Y. Exercise regulation during cycle ergometry using Cantonese version of the CERT and Borg’s RPE. J Phys Educ Sport. 2013;13(2):170–6.

    Google Scholar 

  151. Higgins LW, Robertson RJ, Kelsey SF, Olson MB, Hoffman LA, Rebovich PJ, et al. Exercise intensity self-regulation using the OMNI scale in children with cystic fibrosis. Pediatr Pulmonol. 2013;48(5):497–505.

    Article  PubMed  Google Scholar 

  152. Groslambert A, Monnier Benoit P, Grange CC, Rouillon JD. Self-regulated running using perceived exertion in children. J Sports Med Phys Fitness. 2005;45(1):20–5.

    CAS  PubMed  Google Scholar 

  153. Lamb KL, Eaves SJ, Hartshorn JEO. The effect of experiential anchoring on the reproducibility of exercise regulation in adolescent children. J Sports Sci. 2004;22(2):159–65.

    Article  CAS  PubMed  Google Scholar 

  154. Robertson RJ, Goss FL, Bell JA, Dixon CB, Gallagher KI, Lagally KM, et al. Self-regulated cycling using the Children’s OMNI scale of perceived exertion. Med Sci Sports Exerc. 2002;34(7):1168–75.

    Article  PubMed  Google Scholar 

  155. Cowden RD, Plowman SA. The self-regulation and perception of exercise intensity in children in a field setting. Pediatr Exerc Sci. 1999;11:32–43.

    Article  Google Scholar 

  156. Lamb KL. Exercise regulation during cycle ergometry using the Children’s Effort Rating Table (CERT) and Rating of Perceived Exertion (RPE) Scales. Pediatr Exerc Sci. 1996;8:337–50.

    Article  Google Scholar 

  157. Ward DS, Jackman JD, Galiano FJ. Exercise intensity reproduction: children versus adults. Pediatr Exerc Sci. 1991;3:209–18.

    Article  Google Scholar 

  158. Williams JG, Eston RG, Stretch C. Use of the rating of perceived exertion to control exercise intensity in children. Pediatr Exerc Sci. 1991;3:21–7.

    Article  Google Scholar 

  159. Ward DS, Bar-Or O. Use of the Borg scale in exercise prescription for overweight youth. Can J Sport Sci. 1990;15(2):120–5.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Bok.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Daniel Bok, Marija Rakovac, and Carl Foster declare that they have no conflicts of interest directly relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Authors’ contributions

All authors conducted the literature search, wrote the original manuscript draft, and contributed to its critical revision. All authors read and approved the final version of the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 318 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bok, D., Rakovac, M. & Foster, C. An Examination and Critique of Subjective Methods to Determine Exercise Intensity: The Talk Test, Feeling Scale, and Rating of Perceived Exertion. Sports Med 52, 2085–2109 (2022). https://doi.org/10.1007/s40279-022-01690-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-022-01690-3

Navigation