Skip to main content
Log in

Positron Emission Tomography Diagnostic Imaging in Multidrug-Resistant Hepatocellular Carcinoma: Focus on 2-Deoxy-2-(18F)Fluoro-d-Glucose

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide. Surgical resection and liver transplantation are still the best options for treatment. Nevertheless, as the number of patients who may benefit from these therapies is limited, alternative therapies have been developed, including chemotherapy. However, partly due to the expression of multidrug resistance (MDR) proteins, it has been found that HCC is a highly chemoresistant tumor. The major family of MDR proteins is the ATP-binding cassette (ABC) transporter superfamily, which includes P-glycoprotein (Pgp) and MDR-associated protein 1 (MRP1). Positron emission tomography using the radiolabeled analog of glucose, 2-deoxy-2-(18F)fluoro-d-glucose ([18F]FDG), has been used in diagnostic imaging of various types of tumors. Clinical studies are inconsistent but experimental studies have shown that [18F]FDG uptake is associated with tumor grade and is inversely proportional to Pgp expression in HCC. These studies unveil that [18F]FDG can be a substrate of Pgp, although that relationship remains unclear. This review sums up the relationship between MDR expression in HCC, and [18F]FDG uptake by tumor cells, showing that this radiopharmaceutical may provide a useful tool for the study of chemoresistance in HCC, and that the use of this marker may contribute to the therapeutic choice on this highly aggressive tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi:10.3322/caac.20107.

    Article  PubMed  Google Scholar 

  2. Skelton M, O’Neil B. Targeted therapies for hepatocellular carcinoma. Clin Adv Hematol Oncol. 2008;6(3):209–18.

    PubMed  Google Scholar 

  3. Brito AF, Abrantes AM, Pinto-Costa C, Gomes AR, Mamede AC, Casalta-Lopes J, et al. Hepatocellular carcinoma and chemotherapy: the role of p53. Chemotherapy. 2012;58(5):381–6. doi:10.1159/000343656.

    Article  PubMed  CAS  Google Scholar 

  4. Ferlay J, Parkin D, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 2010;46(4):765–81. doi:10.1016/j.ejca.2009.12.014.

    Article  PubMed  CAS  Google Scholar 

  5. GLOBOCAN: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx. Accessed 3 Oct 2013.

  6. Yang JD, Roberts LR. Hepatocellular carcinoma: a global view. Nat Rev Gastroenterol Hepatol. 2010;7(8):448–58. doi:10.1038/nrgastro.2010.100.

    Article  PubMed  PubMed Central  Google Scholar 

  7. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132(7):2557–76.

    Article  PubMed  CAS  Google Scholar 

  8. Okuda K. Hepatocellular carcinoma. J Hepatol. 2000;32(1 Suppl):225–37.

    Article  PubMed  CAS  Google Scholar 

  9. Alves RC, Alves D, Guz B, Matos C, Viana M, Harriz M, et al. Advanced hepatocellular carcinoma: review of targeted molecular drugs. Ann Hepatol. 2011;10(1):21–7.

    PubMed  Google Scholar 

  10. Ni YH, Chang MH, Huang LM, Chen HL, Hsu HY, Chiu TY, et al. Hepatitis B virus infection in children and adolescents in a hyperendemic area: 15 years after mass hepatitis B vaccination. Ann Intern Med. 2001;135(9):796–800.

    Article  PubMed  CAS  Google Scholar 

  11. Harpaz R, McMahon BJ, Margolis HS, Shapiro CN, Havron D, Carpenter G, et al. Elimination of new chronic hepatitis B virus infections: results of the Alaska Immunization Program. J Infect Dis. 2000;181(2):413–8.

    Article  PubMed  CAS  Google Scholar 

  12. Wang XW, Hussain SP, Huo TI, Wu CG, Forgues M, Hofseth LJ, et al. Molecular pathogenesis of human hepatocellular carcinoma. Toxicology. 2002;181–182:43–7.

    Article  PubMed  Google Scholar 

  13. Gomaa AI, Khan SA, Leen EL, Waked I, Taylor-Robinson SD. Diagnosis of hepatocellular carcinoma. World J Gastroenterol. 2009;15(11):1301–14.

    Article  PubMed  PubMed Central  Google Scholar 

  14. El-Serag HB, Marrero JA, Rudolph L, Reddy KR. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology. 2008;134(6):1752–63. doi:10.1053/j.gastro.2008.02.090.

    Article  PubMed  Google Scholar 

  15. Kuczynski EA, Sargent DJ, Grothey A, Kerbel RS. Drug rechallenge and treatment beyond progression: implications for drug resistance. Nat Rev Clin Oncol. 2013;10(10):571–87. doi:10.1038/nrclinonc.2013.158.

    Article  PubMed  CAS  Google Scholar 

  16. Mazzanti R, Gramantieri L, Bolondi L. Hepatocellular carcinoma: epidemiology and clinical aspects. Mol Aspects Med. 2008;29(1–2):130–43.

    Article  PubMed  Google Scholar 

  17. Cabrera R, Nelson DR. Review article: the management of hepatocellular carcinoma. Aliment Pharmacol Ther. 2010;31(4):461–76. doi:10.1111/j.1365-2036.2009.04200.x.

    Article  PubMed  CAS  Google Scholar 

  18. Casalta-Lopes J, Abrantes AM, Laranjo M, Rio J, Gonçalves AC, Oliveiros B, et al. Efflux pumps modulation in colorectal adenocarcinoma cell lines: the role of nuclear medicine. J Cancer Ther. 2011;02(03):408–17. doi:10.4236/jct.2011.23056.

    Article  CAS  Google Scholar 

  19. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2(1):48–58.

    Article  PubMed  CAS  Google Scholar 

  20. Gillet JP, Gottesman MM. Mechanisms of multidrug resistance in cancer. Methods Mol Biol. 2010;596:47–76. doi:10.1007/978-1-60761-416-6_4.

    Article  PubMed  CAS  Google Scholar 

  21. Izquierdo MA, Scheffer GL, Schroeijers AB, de Jong MC, Scheper RJ. Vault-related resistance to anticancer drugs determined by the expression of the major vault protein LRP. Cytotechnology. 1998;27(1–3):137–48. doi:10.1023/A:1008004502861.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Saraswathy M, Gong S. Different strategies to overcome multidrug resistance in cancer. Biotechnol Adv. 2013;31(8):1397-407. doi:10.1016/j.biotechadv.2013.06.004.

  23. Shen DW, Lu YG, Chin KV, Pastan I, Gottesman MM. Human hepatocellular carcinoma cell lines exhibit multidrug resistance unrelated to MRD1 gene expression. J Cell Sci. 1991;98(Pt 3):317–22.

    PubMed  CAS  Google Scholar 

  24. Krishnakumar S, Mallikarjuna K, Desai N, Muthialu A, Venkatesan N, Sundaram A, et al. Multidrug resistant proteins: P-glycoprotein and lung resistance protein expression in retinoblastoma. Br J Ophthalmol. 2004;88(12):1521–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Vander Borght S, Komuta M, Libbrecht L, Katoonizadeh A, Aerts R, Dymarkowski S, et al. Expression of multidrug resistance-associated protein 1 in hepatocellular carcinoma is associated with a more aggressive tumour phenotype and may reflect a progenitor cell origin. Liver Int. 2008;28(10):1370–80. doi:10.1111/j.1478-3231.2008.01889.x.

    Article  PubMed  CAS  Google Scholar 

  26. Chen ZS, Tiwari AK. Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J. 2011;278(18):3226–45. doi:10.1111/j.1742-4658.2011.08235.x.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Leslie EM, Deeley RG, Cole SP. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol. 2005;204(3):216–37.

    Article  PubMed  CAS  Google Scholar 

  28. Sharom F. Complex interplay between the P-glycoprotein multidrug efflux pump and the membrane: its role in modulating protein function. Front Oncol. 2013;4(41):1–19. doi:10.3389/fonc.2014.00041.

    Google Scholar 

  29. Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM. P-glycoprotein: from genomics to mechanism. Oncogene. 2003;22(47):7468–85.

    Article  PubMed  CAS  Google Scholar 

  30. Teodori E, Dei S, Scapecchi S, Gualtieri F. The medicinal chemistry of multidrug resistance (MDR) reversing drugs. Farmaco. 2002;57(5):385–415.

    Article  PubMed  CAS  Google Scholar 

  31. Stavrovskaya AA. Cellular mechanisms of multidrug resistance of tumor cells. Biochemistry (Mosc). 2000;65(1):95–106.

    CAS  Google Scholar 

  32. Borst P, Elferink RO. Mammalian ABC transporters in health and disease. Annu Rev Biochem. 2002;71:537–92.

    Article  PubMed  CAS  Google Scholar 

  33. Kruh GD, Belinsky MG. The MRP family of drug efflux pumps. Oncogene. 2003;22(47):7537–52.

    Article  PubMed  CAS  Google Scholar 

  34. Borst P, Evers R, Kool M, Wijnholds J. The multidrug resistance protein family. Biochim Biophys Acta. 1999;1461(2):347–57.

    Article  PubMed  CAS  Google Scholar 

  35. Hipfner DR, Deeley RG, Cole SP. Structural, mechanistic and clinical aspects of MRP1. Biochim Biophys Acta. 1999;1461(2):359–76.

    Article  PubMed  CAS  Google Scholar 

  36. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976;455(1):152–62.

    Article  PubMed  CAS  Google Scholar 

  37. Hennessy M, Spiers JP. A primer on the mechanics of P-glycoprotein the multidrug transporter. Pharmacol Res. 2007;55(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  38. Gottesman MM, Pastan I, Ambudkar SV. P-glycoprotein and multidrug resistance. Curr Opin Genet Dev. 1996;6(5):610–7.

    Article  PubMed  CAS  Google Scholar 

  39. Lehne G. P-glycoprotein as a drug target in the treatment of multidrug resistant cancer. Curr Drug Targets. 2000;1(1):85–99.

    Article  PubMed  CAS  Google Scholar 

  40. Chen YB, Yan ML, Gong JP, Xia RP, Liu LX, Li N, et al. Establishment of hepatocellular carcinoma multidrug resistant monoclone cell line HepG2/mdr1. Chin Med J (Engl). 2007;120(8):703–7.

    CAS  Google Scholar 

  41. Ng IO, Liu CL, Fan ST, Ng M. Expression of P-glycoprotein in hepatocellular carcinoma. A determinant of chemotherapy response. Am J Clin Pathol. 2000;113(3):355–63.

    Article  PubMed  CAS  Google Scholar 

  42. Isshiki K, Nakao A, Ito M, Hamaguchi M, Takagi H. P-glycoprotein expression in hepatocellular carcinoma. J Surg Oncol. 1993;52(1):21–5.

    Article  PubMed  CAS  Google Scholar 

  43. Soini Y, Virkajärvi N, Raunio H, Pääkkö P. Expression of P-glycoprotein in hepatocellular carcinoma: a potential marker of prognosis. J Clin Pathol. 1996;49(6):470–3.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Chou YY, Cheng AL, Hsu HC. Expression of P-glycoprotein and p53 in advanced hepatocellular carcinoma treated by single agent chemotherapy: clinical correlation. J Gastroenterol Hepatol. 1997;12(8):569–75.

    Article  PubMed  CAS  Google Scholar 

  45. Grudé P, Conti F, Mennecier D, Louvel A, Houssin D, Weill B, et al. MDR1 gene expression in hepatocellular carcinoma and the peritumoral liver of patients with and without cirrhosis. Cancer Lett. 2002;186(1):107–13.

    Article  PubMed  Google Scholar 

  46. Bonin S, Pascolo L, Crocé LS, Stanta G, Tiribelli C. Gene expression of ABC proteins in hepatocellular carcinoma, perineoplastic tissue, and liver diseases. Mol Med. 2002;8(6):318–25.

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Sun Z, Zhao Z, Li G, Dong S, Huang Z, Ye L, et al. Relevance of two genes in the multidrug resistance of hepatocellular carcinoma: in vivo and clinical studies. Tumori. 2010;96(1):90–6.

    PubMed  CAS  Google Scholar 

  48. Huang J, Duan Q, Fan P, Ji C, Lv Y, Lin X, et al. Clinical evaluation of targeted arterial infusion of verapamil in the interventional chemotherapy of primary hepatocellular carcinoma. Cell Biochem Biophys. 2011;59(2):127–32. doi:10.1007/s12013-010-9125-9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Tada K, Iwai M, Ishii Y, Kitagawa Y, Kashiwadani M, Nakashima T, et al. P-glycoprotein expression in hepatocellular carcinoma-from the view of histological differentiation and chemotherapy. Int Hepatol Commun. 1995;3:158.

    Article  Google Scholar 

  50. Wang H, Chen XP, Qiu FZ. Correlation of expression of multidrug resistance protein and messenger RNA with 99mTc-methoxyisobutyl isonitrile (MIBI) imaging in patients with hepatocellular carcinoma. World J Gastroenterol. 2004;10(9):1281–5.

    PubMed  CAS  Google Scholar 

  51. Palmeira A, Sousa E, Vasconcelos MH, Pinto MM. Three decades of P-gp inhibitors: skimming through several generations and scaffolds. Curr Med Chem. 2012;19(13):1946–2025.

    Article  PubMed  CAS  Google Scholar 

  52. Szakács G, Homolya L, Sarkadi B, Váradi A. MDR-ABC transporters. Encyclopedia of Molecular Pharmacology;2008: p. 748–52.

  53. Zahreddine H, Borden KL. Mechanisms and insights into drug resistance in cancer. Front Pharmacol. 2013;4:28. doi:10.3389/fphar.2013.00028.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ros JE, Libbrecht L, Geuken M, Jansen PL, Roskams TA. High expression of MDR1, MRP1, and MRP3 in the hepatic progenitor cell compartment and hepatocytes in severe human liver disease. J Pathol. 2003;200(5):553–60.

    Article  PubMed  CAS  Google Scholar 

  55. Wang BL, Chen XP, Zhai SP, Chen DF. Clinical significance of mrp gene in primary hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int. 2003;2(3):397–403.

    PubMed  CAS  Google Scholar 

  56. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    Article  PubMed  CAS  Google Scholar 

  57. Gasparre G, Porcelli AM, Lenaz G, Romeo G. Relevance of mitochondrial genetics and metabolism in cancer development. Cold Spring Harb Perspect Biol. 2013;5(2). doi:10.1101/cshperspect.a011411.

  58. Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E. Energy metabolism in tumor cells. FEBS J. 2007;274:1393–418.

    Article  PubMed  Google Scholar 

  59. Icard P, Lincet H. A global view of the biochemical pathways involved in the regulation of the metabolism of cancer cells. Biochim Biophys Acta. 2012;1826(2):423–33. doi:10.1016/j.bbcan.2012.07.001.

    PubMed  CAS  Google Scholar 

  60. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33. doi:10.1126/science.1160809.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Soga T. Cancer metabolism: key players in metabolic reprogramming. Cancer Sci. 2013;104(3):275–81. doi:10.1111/cas.12085.

    Article  PubMed  CAS  Google Scholar 

  62. Wu W, Zhao S. Metabolic changes in cancer: beyond the Warburg effect. Acta Biochim Biophys Sin (Shanghai). 2013;45(1):18–26. doi:10.1093/abbs/gms104.

    Article  CAS  Google Scholar 

  63. Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell. 2008;134(5):703–7. doi:10.1016/j.cell.2008.08.021.

    Article  PubMed  CAS  Google Scholar 

  64. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4(11):891–9.

    Article  PubMed  CAS  Google Scholar 

  65. Lopci E, Fanti S. Molecular imaging in oncology. Recent Results Cancer Res. 2013;187:371–400. doi:10.1007/978-3-642-10853-2_13.

    Article  PubMed  Google Scholar 

  66. Plathow C, Weber WA. Tumor cell metabolism imaging. J Nucl Med. 2008;49(Suppl 2):43S–63S. doi:10.2967/jnumed.107.045930.

    Article  PubMed  CAS  Google Scholar 

  67. Jadvar H, Alavi A, Gambhir SS. 18F-FDG uptake in lung, breast, and colon cancers: molecular biology correlates and disease characterization. J Nucl Med. 2009;50(11):1820–7. doi:10.2967/jnumed.108.054098.

    Article  PubMed  PubMed Central  Google Scholar 

  68. De Gaetano AM, Rufini V, Castaldi P, Gatto AM, Filograna L, Giordano A, et al. Clinical applications of (18)F-FDG PET in the management of hepatobiliary and pancreatic tumors. Abdom Imaging. 2012;37(6):983–1003. doi:10.1007/s00261-012-9845-y.

    Article  PubMed  Google Scholar 

  69. Raddatz D, Ramadori G. Carbohydrate metabolism and the liver: actual aspects from physiology and disease. Z Gastroenterol. 2007;45(1):51–62.

    Article  PubMed  CAS  Google Scholar 

  70. Amann T, Maegdefrau U, Hartmann A, Stoeltzing O, Weiss TS, Warnecke C, et al. GLUT1 and GLUT3 expression are increased in hepatocellular carcinoma and promote tumorigenesis. Z Gastroenterol. 2009;47:p3_01. doi:10.1055/s-0029-1191858.

    Article  Google Scholar 

  71. Amann T, Hellerbrand C. GLUT1 as therapeutic target in hepatocellular carcinoma. Expert Opin Ther Targets. 2009;13(12):1411–27. doi:10.1517/14728220903307509.

    Article  PubMed  CAS  Google Scholar 

  72. Salem N, MacLennan GT, Kuang Y, Anderson PW, Schomisch SJ, Tochkov IA, et al. Quantitative evaluation of 2-deoxy-2[F-18]fluoro-d-glucose-positron emission tomography imaging on the woodchuck model of hepatocellular carcinoma with histological correlation. Mol Imaging Biol. 2007;9(3):135–43.

    Article  PubMed  Google Scholar 

  73. Sacks A, Peller PJ, Surasi DS, Chatburn L, Mercier G, Subramaniam RM. Value of PET/CT in the management of primary hepatobiliary tumors, part 2. AJR Am J Roentgenol. 2011;197(2):W260–5. doi:10.2214/AJR.11.6995.

    Article  PubMed  Google Scholar 

  74. Khan MA, Combs CS, Brunt EM, Lowe VJ, Wolverson MK, Solomon H, et al. Positron emission tomography scanning in the evaluation of hepatocellular carcinoma. J Hepatol. 2000;32(5):792–7.

    Article  PubMed  CAS  Google Scholar 

  75. Lee JE, Jang JY, Jeong SW, Lee SH, Kim SG, Cha SW, et al. Diagnostic value for extrahepatic metastases of hepatocellular carcinoma in positron emission tomography/computed tomography scan. World J Gastroenterol. 2012;18(23):2979–87. doi:10.3748/wjg.v18.i23.2979.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Wolfort RM, Papillion PW, Turnage RH, Lillien DL, Ramaswamy MR, Zibari GB. Role of FDG-PET in the evaluation and staging of hepatocellular carcinoma with comparison of tumor size, AFP level, and histologic grade. Int Surg. 2010;95(1):67–75.

    PubMed  CAS  Google Scholar 

  77. Dizdarevic S, Peters AM. Imaging of multidrug resistance in cancer. Cancer Imaging. 2011;11:1–8. doi:10.1102/1470-7330.2011.0001.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Higashi K, Ueda Y, Ikeda R, Kodama Y, Guo J, Matsunari I, et al. P-glycoprotein expression is associated with FDG uptake and cell differentiation in patients with untreated lung cancer. Nucl Med Commun. 2004;25(1):19–27.

    Article  PubMed  CAS  Google Scholar 

  79. Seo S, Hatano E, Higashi T, Nakajima A, Nakamoto Y, Tada M, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography predicts lymph node metastasis, P-glycoprotein expression, and recurrence after resection in mass-forming intrahepatic cholangiocarcinoma. Surgery. 2008;143(6):769–77. doi:10.1016/j.surg.2008.01.010.

    Article  PubMed  Google Scholar 

  80. Seo S, Hatano E, Higashi T, Hara T, Tada M, Tamaki N, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography predicts tumor differentiation, P-glycoprotein expression, and outcome after resection in hepatocellular carcinoma. Clin Cancer Res. 2007;13(2 Pt 1):427–33.

    Article  PubMed  CAS  Google Scholar 

  81. Lorke DE, Krüger M, Buchert R, Bohuslavizki KH, Clausen M, Schumacher U. In vitro and in vivo tracer characteristics of an established multidrug-resistant human colon cancer cell line. J Nucl Med. 2001;42(4):646–54.

    PubMed  CAS  Google Scholar 

  82. Bentley J, Quinn DM, Pitman RS, Warr JR, Kellett GL. The human KB multidrug-resistant cell line KB-Cl is hypersensitive to inhibitors of glycosylation. Cancer Lett. 1997;115(2):221–7.

    Article  PubMed  CAS  Google Scholar 

  83. Yamada K, Brink I, Engelhardt R. Factors influencing [F-18] 2-fluoro-2-deoxy-d-glucose (F-18 FDG) accumulation in melanoma cells: is FDG a substrate of multidrug resistance (MDR)? J Dermatol. 2005;32(5):335–45.

    Article  PubMed  CAS  Google Scholar 

  84. Seo S, Hatano E, Higashi T, Nakajima A, Nakamoto Y, Tada M, et al. P-glycoprotein expression affects 18 F-fluorodeoxyglucose accumulation in hepatocellular carcinoma in vivo and in vitro. Int J Oncol. 2009;34(5):1303–12.

    PubMed  CAS  Google Scholar 

  85. Krasznai ZT, Tóth A, Mikecz P, Fodor Z, Szabó G, Galuska L, et al. Pgp inhibition by UIC2 antibody can be followed in vitro by using tumor-diagnostic radiotracers, 99mTc-MIBI and 18FDG. Eur J Pharm Sci. 2010;41(5):665–9. doi:10.1016/j.ejps.2010.09.009.

    Article  PubMed  CAS  Google Scholar 

  86. Kannan P, John C, Zoghbi SS, Halldin C, Gottesman MM, Innis RB, et al. Imaging the function of P-glycoprotein with radiotracers: pharmacokinetics and in vivo applications. Clin Pharmacol Ther. 2009;86(4):368–77. doi:10.1038/clpt.2009.138.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Chang CS, Huang WT, Yang SS, Yeh HZ, Kao CH, Chen GH. Effect of P-glycoprotein and multidrug resistance associated protein gene expression on Tc-99m MIBI imaging in hepatocellular carcinoma. Nucl Med Biol. 2003;30(2):111–7.

    Article  PubMed  CAS  Google Scholar 

  88. Shen DW, Lu YG, Chin KV, Pastan I, Gottesman MM. Human hepatocellular carcinoma cell lines exhibit multidrug resistance unrelated to MRD1 gene expression. J Cell Sci. 1991;98(3):317–22.

    PubMed  CAS  Google Scholar 

  89. Márián T, Szabó G, Goda K, Nagy H, Szincsák N, Juhász I, et al. In vivo and in vitro multitracer analyses of P-glycoprotein expression-related multidrug resistance. Eur J Nucl Med Mol Imaging. 2003;30(8):1147–54.

    Article  PubMed  Google Scholar 

  90. Sharom FJ. The P-glycoprotein multidrug transporter. Essays Biochem. 2011;50(1):161–78. doi:10.1042/bse0500161.

    Article  PubMed  CAS  Google Scholar 

  91. Elferink RP, Paulusma CC. Function and pathophysiological importance of ABCB4 (MDR3 P-glycoprotein). Pflugers Arch. 2007;453(5):601–10.

    Article  Google Scholar 

  92. Kubitz R, Dröge C, Stindt J, Weissenberger K, Häussinger D. The bile salt export pump (BSEP) in health and disease. Clin Res Hepatol Gastroenterol. 2012;36(6):536–53. doi:10.1016/j.clinre.2012.06.006.

    Article  PubMed  CAS  Google Scholar 

  93. Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001;11(7):1156–66.

    Article  PubMed  CAS  Google Scholar 

  94. Paterson J, Shukla S, Black C, Tachiwada T, Garfield S, Wincovitch S, et al. Human ABCB6 localizes to both the outer mitochondrial membrane and the plasma membrane. Biochemistry. 2007;46:9443–52.

    Article  PubMed  CAS  Google Scholar 

  95. Chavan H, Oruganti M, Krishnamurthy P. The ATP-binding cassette transporter ABCB6 is induced by arsenic and protects against arsenic cytotoxicity. Toxicol Sci. 2011;120(2):519–28. doi:10.1093/toxsci/kfr008.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  96. Staud F, Pavek P. Breast cancer resistance protein (BCRP/ABCG2). Int J Biochem Cell Biol. 2005;37(4):720–5.

    Article  PubMed  CAS  Google Scholar 

  97. Mack J, Townsend D, Beljanski V, Tew K. The ABCA2 transporter: intracellular roles in trafficking and metabolism of LDL-derived cholesterol and sterol-related compounds. Curr Drug Metab. 2007;8:47–57.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

Ana F. Brito would like to thank the Portuguese Foundation for Science and Technology for the award of a PhD scholarship (SFRH/BD/61378/2009).

Ana F. Brito, Mónica Mendes, Ana M. Abrantes, José G. Tralhão and Maria F. Botelho have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana F. Brito.

Additional information

A. F. Brito and M. Mendes contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito, A.F., Mendes, M., Abrantes, A.M. et al. Positron Emission Tomography Diagnostic Imaging in Multidrug-Resistant Hepatocellular Carcinoma: Focus on 2-Deoxy-2-(18F)Fluoro-d-Glucose. Mol Diagn Ther 18, 495–504 (2014). https://doi.org/10.1007/s40291-014-0106-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-014-0106-3

Keywords

Navigation