Skip to main content
Log in

Perturbed State-Transition Matrix for Spacecraft Formation Flying Terminal-Point Guidance

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

This paper presents a guidance solution of relative motion between two spacecraft using relative classical orbital elements for on-board implementation purposes. The solution is obtained by propagating the relative orbital elements forward in time using a newly formulated state-transition matrix, while taking into account gravitational field up to the fifth harmonic, third-body effects up to the fourth order and drag, then calculating the relative motion in the local-vertical-local-horizontal reference frame at each time-step. Specifically, utilizing Jacobian matrices evaluated at the target spacecraft’s initial orbital elements, the solution proposed in this paper requires only a single matrix multiplication with the initial orbital elements and the desired time to propagate relative orbital elements forward in time. The new solution is shown to accurately describe the relative motion when compared with a numerical simulator, yielding errors on the order of meters for separation distances on the order of thousands of meters. Additionally, the solution maintained accurate tracking performance when used within a back-propagation, or terminal-point, guidance law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Appendix, A.: Newton–Raphson Method. Wiley, Hoboken (2003). https://doi.org/10.1002/0471458546.app1

    Google Scholar 

  2. Brouwer, D.: Solution of the problem of artificial satellite theory without drag. Astronom. J. 64(1274), 378–396 (1959). https://doi.org/10.1086/107958

    Article  MathSciNet  Google Scholar 

  3. Clohessy, W.H., Wiltshire, R.S.: Terminal guidance system for satellite rendezvous. J. Aeros. Sci. 27(9), 653–658 (1960). https://doi.org/10.2514/8.8704

    Article  Google Scholar 

  4. Cook, G.E.: Luni-solar perturbations of the orbit of an earth satellite. Geophys. J. 6(3), 271–291 (1962). https://doi.org/10.1111/j.1365-246X.1962.tb00351.x

    Article  Google Scholar 

  5. Danielson, D.A.: Semianalytic Satellite Theory. Master’s Thesis, Naval Postgraduate School. Monterey, California (1995)

  6. Domingos, R.C., deMoraes, R.V., Prado, A.F.B.D.A.: Third-body perturbation in the case of elliptic orbits for the disturbing bodies. Math. Probl. Eng. 2008. https://doi.org/10.1155/2008/763654 (2008)

  7. Giacaglia, G.E.O.: Lunar perturbations of artificial satellites of the earth. Celest. Mech. Dyn. Astron. 9, 239–267 (1972)

    Article  MathSciNet  Google Scholar 

  8. Gim, D.W., Alfriend, K.T.: State transition matrix of relative motion for the perturbed noncircular reference orbit. J. Guid. Cont. Dynam. 26 (6), 956–971 (2003). https://doi.org/10.2514/2.6924

    Article  Google Scholar 

  9. Guffanti, T., D’Amico, S., Lavagna, M.: Long-term analytical propagation of satellite relative motion in perturbed orbits. AAS Spaceflight Mechanics Proceedings 160 (2017)

  10. Xu, G., Xu Tianhe, W.C., Yeh, T.K.: Analytic solution of satellite orbit disturbed by atmospheric drag. Mon. Not. R. Astron. Soc. 410(1), 654–662 (2010)

    Article  Google Scholar 

  11. Gurfil, P., Kasdin, N.J.: Nonlinear modeling of spacecraft relative motion in the configuration space. J. Guid. Cont. Dynam. 27(1), 154–157 (2004). https://doi.org/10.2514/1.9343

    Article  Google Scholar 

  12. Gurfil, P., Kholshevnikov, K.V.: Manifolds and metrics in the relative spacecraft motion problem. J. Guid. Cont. Dynam. 29(4), 1004–1010 (2006). https://doi.org/10.2514/1.15531

    Article  Google Scholar 

  13. Gurfil, P., Kholshevnikov, K.V.: Distances on the relative spacecraft motion manifold. AIAA Guidance, Navigation and Control Conference and Exhibit (San Francisco, CA. AIAA paper 2005–5859) (2005)

  14. Hamel, J.F., Lafontaine, J.D.: Linearized dynamics of formation flying spacecraft on a j2-perturbed elliptical orbit. J. Guid. Cont. Dynam. 30 (6), 1649–1658 (2007)

    Article  Google Scholar 

  15. Hill, G.: Researches in the lunar theory. Am. J. Math. 1, 5–26 (1878)

    Article  MathSciNet  Google Scholar 

  16. Inalhan, G., Tillerson, M., How, J.: Relative dynamics and control of spacecraft formations in eccentric orbits. J. Guid. Cont. Dynam. 25(1), 48–59 (2002). https://doi.org/10.2514/2.4874

    Article  Google Scholar 

  17. Izsak, I.G.: Periodic drag perturbations of artificial satellites. Astronom. J. 65(5), 355–357 (1960)

    Article  MathSciNet  Google Scholar 

  18. Kaula, W.M.: Development of the lunar and solar disturbing functions for a close satellite. Astronom. J. 67, 300–303 (1962). https://doi.org/10.1086/108729

    Article  MathSciNet  Google Scholar 

  19. Koenig, A.W., Guffanti, T., D’Amico, S.: New state transition matrices for spacecraft relative motion in perturbed orbits. J. Guid. Cont. Dynam. 40(7), 1749–1768 (2017). https://doi.org/10.2514/1.G002409

    Article  Google Scholar 

  20. Kozai, Y.: On the effects of the sun and moon upon the motion of a close earth satellite. Smithsonian Astrophysical Observatory (Special Report 22) (1959)

  21. Kozai, Y.: The gravitational field of the earth derived from motions of three satellites. Astronom. J. 66(1). https://doi.org/10.1086/108349 (1961)

  22. Kozai, Y.: A new method to compute lunisolar perturbations in satellite motions. Smithsonian Astrophysical Observatory pp. 1–27 (Special Report 349) (1973)

  23. Kuiack, B., Ulrich, S.: Nonlinear analytical equations of relative motion on j2-perturbed eccentric orbits. AIAA J. Guid. Cont. Dynam. 41(11), 2666–2677 (2017). https://doi.org/10.2514/1.G003723

    Google Scholar 

  24. Lawden, D.F.: Theory of satellite orbits in an atmosphere. d. g. king-hele. butterworths, london. 1964. 165 pp. diagrams. 30s. J. R. Aeronaut. Soc. 68(645), 639–640 (1964)

    Article  Google Scholar 

  25. Liu, J.J.F.: Satellite motion about an oblate earth. AIAA J. 12 (11), 1511–1516 (1974). https://doi.org/10.2514/3.49537

    Article  Google Scholar 

  26. Mahajan, B., Vadali, S.R., Alfriend, K.T.: State-transition matrix for satellite relative motion in the presence of gravitational perturbations. J. Guid. Cont. Dynam. 1–17. https://doi.org/10.2514/1.G004133 (2019)

  27. Martinusi, V., Dell’Elce, L., Kerschen, G.: First-order analytic propagation of satellites in the exponential atmosphere of an oblate planet. Celest. Mech. Dyn. Astron. 127(4), 451–476 (2017)

    Article  MathSciNet  Google Scholar 

  28. Musen, P., Bailie, A., Upton, E.: Development of the lunar and solar perturbations in the motion of an artificial satellite. NASA-TN D494 (1961)

  29. NASA: Spaceflight revolution: The odyssey of project echo (Accessed: January 2019). https://history.nasa.gov/SP-4308/ch6.htm (2019)

  30. Prado, A.F.B.A.: Third-body perturbation in orbits around natural satellites. J. Guid. Cont. Dynam. 26(1), 33–40 (2003). https://doi.org/10.1155/2008/763654

    Article  Google Scholar 

  31. Schaub, H.: Incorporating secular drifts into the orbit element difference description of relative orbit. Adv. Astronaut. Sci. 114, 239–258 (2003)

    Google Scholar 

  32. Schaub, H., Junkins, J.L.: Analytical mechanics of space systems. AIAA Amer. Instit. Aeronaut. Astronaut. 593–673 (2018)

  33. Sengupta, P., Vadali, S.R., Alfriend, K.T.: Averaged relative motion and applications to formation flight near perturbed orbits. J. Guid. Cont. Dynam. 31(2), 258–272 (2008). https://doi.org/10.2514/1.30620

    Article  Google Scholar 

  34. Smith, D.E.: The perturbation of satellite orbits by extra-terrestrial gravitation. Planet. Space Sci. 9(10), 659–674 (1962). https://doi.org/10.1016/0032-0633(62)90125-3

    Article  Google Scholar 

  35. Roscoe, T.C.W., Vadali, S.R., Alfriend, K.T.: Third-body perturbation effects on satellite formations. J. Astronaut. Sci. 60(3), 408–433 (2013). https://doi.org/10.1007/s40295-015-0057-x

    Article  Google Scholar 

  36. Tooley, C.R., Black, R.K., Robertson, B.P., Stone, J.M., Pope, S.E., Davis, G.T.: The magnetospheric multiscale constellation. Space Sci. Rev. 199(1), 23–76 (2016). https://doi.org/10.1007/s11214-015-0220-5

    Article  Google Scholar 

  37. Vallado, D.A.: Fundamentals of astrodynamics and applications, 2nd edn., pp 80–81. El Segundo, Microcosm Press (2001)

    Google Scholar 

  38. Vinti, J.P.: Zonal harmonic perturbations of an accurate reference orbit of an artificial satellite. Math. Math. Phys. 67B(4) (1963)

  39. Watson, J.S., Mislretta, G.D., Bonavito, N.L.: An analytic method to account for drag in the vinti satellite theory. Goddard Space Flight Center, Greenbelt, Maryland 71–92 (1974)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yazan Chihabi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chihabi, Y., Ulrich, S. Perturbed State-Transition Matrix for Spacecraft Formation Flying Terminal-Point Guidance. J Astronaut Sci 68, 642–676 (2021). https://doi.org/10.1007/s40295-021-00272-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-021-00272-1

Keywords

Navigation