Skip to main content
Log in

A Note on Nondegenerate Matrix Polynomials

  • Published:
Acta Mathematica Vietnamica Aims and scope Submit manuscript

Abstract

In this paper, via Newton polyhedra, we define and study symmetric matrix polynomials which are nondegenerate at infinity. From this, we construct a class of (not necessarily compact) semialgebraic sets in \(\mathbb {R}^{n}\) such that for each set K in the class, we have the following two statements: (i) the space of symmetric matrix polynomials, whose eigenvalues are bounded on K, is described in terms of the Newton polyhedron corresponding to the generators of K (i.e., the matrix polynomials used to define K) and is generated by a finite set of matrix monomials; and (ii) a matrix version of Schmüdgen’s Positivstellensätz holds: every matrix polynomial, whose eigenvalues are “strictly” positive and bounded on K, is contained in the preordering generated by the generators of K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. “maximal face” means with respect to the inclusion of faces.

References

  1. Benedetti, R., Risler, J.-J.: Real Algebraic and Semi-algebraic Sets. Hermann, Paris (1990)

    MATH  Google Scholar 

  2. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry, vol. 36. Springer-Verlag, Berlin (1998)

    Book  MATH  Google Scholar 

  3. Cimprič, J.: Archimedean operator-theoretic Positivstellensätze. J. Funct. Anal. 260(10), 3132–3145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cimprič, J.: Real algebraic geometry for matrices over commutative rings. J. Algebra 359, 89–103 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cimprič, J., Zalar, A.: Moment problems for operator polynomials. J. Math. Anal. Appl. 401(1), 307–316 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gindikin, S.G.: Energy estimates connected with the Newton polyhedron. Trudy Moskov. Mat. Obšč 31, 189–236 (1974)

    MathSciNet  Google Scholar 

  7. Gindikin, S.G.: Trans. Moscow. Math. Soc. 31, 193–246 (1974)

    MathSciNet  MATH  Google Scholar 

  8. Hà, H.V., Ho, T.M.: Positive polynomials on nondegenerate basic semi-algebraic sets. Adv. Geom. 16(4), 497–510 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hà, H.V., Phạm, T.S.: Genericity in polynomial optimization 3. Series on Optimization and Its Applications. World Scientific Publishing Co. Ltd., Hackensack, NJ (2017)

  10. Klep, I., Schweighofer, M.: Pure states, positive matrix polynomials and sums of hermitian squares. Indiana Univ. Math. J. 59(3), 857–874 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kurdyka, K., Michalska, M., Spodzieja, S.: Bifurcation values and stability of algebras of bounded polynomials. Adv. Geom. 14(4), 631–646 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications. Imperial College Press, London (2009)

    Book  Google Scholar 

  13. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. Emerging Applications of Algebraic Geometry 157–270. IMA Vol. Math. Appl, vol. 149. Springer, New York (2009)

    Google Scholar 

  14. Marshall, M.: Positive polynomials and sum of squares. Mathematical Surveys and Monographs 146. American Mathematical Society, Providence, RI (2008)

  15. Marshall, M.: Polynomials non-negative on a strip. Proc. Am. Math. Soc. 138 (5), 1559–1567 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Michalska, M.: Algebra of bounded polynomials on a set Zariski closed at infinity cannot be finitely generated. Bull. Sci. Math. 137(6), 705–715 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mikhalov, V.P.: The behaviour at infinity of a class of polynomials. Trudy Mat. lnst. Steklov. 91, 59–81 (1967)

    Google Scholar 

  18. Mikhalov, V.P.: Proc. Steklov Inst. Math. 91, 61–82 (1967)

    Google Scholar 

  19. Milnor, J.: Singular Points of Complex Hypersurfaces. Ann. Math. Studies 61, Princeton University Press, Princeton, N.J.: University of Tokyo Press, Tokyo (1968)

  20. Némethi, A., Zaharia, A.: Milnor fibration at infinity. Indag. Math. (N.S.) 3(3), 323–335 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nguyen, H., Powers, V.: Polynomials non-negative on strips and half-strips. J. Pure Appl. Algebra 216(10), 2225–2232 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Phạm, P.P., Phạm, T.S.: Compactness criteria for real algebraic sets and Newton polyhedra. arXiv:1705.10917 (2017)

  23. Plaumann, D., Scheiderer, C.: The ring of bounded polynomials on a semi-algebraic set. Trans. Am. Math. Soc. 364(9), 4663–4682 (2012)

    Article  MATH  Google Scholar 

  24. Powers, V.: Positive polynomials and the moment problem for cylinders with compact cross-section. J. Pure Appl. Algebra 188(1–3), 217–226 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Powers, V., Reznick, B.: Polynomials positive on unbounded rectangles. Positive polynomial in control, 151–163. Lect. Notes Control Inf. Sci, vol. 312. Springer, Berlin (2005)

    Google Scholar 

  26. Prestel, A., Delzell, C.N.: Positive polynomials. From Hilbert’s 17th problem to real algebra. Springer Monographs in Mathematics. Springer-Verlag, Berlin (2001)

    MATH  Google Scholar 

  27. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42(3), 969–984 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Scheiderer, C.: Sums of squares of regular functions on real algebraic varieties. Trans. Am. Math. Soc. 352(3), 1039–1069 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Scheiderer, C.: Sums of squares on real algebraic curves. Math. Z. 245(4), 725–760 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Scheiderer, C.: Sums of squares on real algebraic surfaces. Manuscripta Math. 119(4), 395–410 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Scheiderer, C.: Positivity and sums of squares: a guide to recent results. Emerging applications of algebraic geometry, 271–324. IMA Vol. Math. Appl, vol. 149. Springer, New York (2009)

    Google Scholar 

  32. Scherer, C.W., Hol, C.W.J.: Matrix sum-of-squares relaxations for robust semi-definite programs. Math. Program, Ser. B 107(1–2), 189–211 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schmüdgen, K.: The K-moment problem for compact semi-algebraic sets. Math. Ann. 289(2), 203–206 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schweighofer, M.: Global optimization of polynomials using gradient tentacles and sums of squares. SIAM J. Optim. 17(3), 920–942 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The first author (Dr. Dinh) is partially supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED), grant 101.02-2017.310. The second author (Dr. Ho) is partially supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED), grant 101.04-2017.12. The third author (Dr. Pham) is partially supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED), grant 101.04-2016.05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toan Minh Ho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, T.H., Ho, T.M. & Phạm, T.S. A Note on Nondegenerate Matrix Polynomials. Acta Math Vietnam 43, 761–778 (2018). https://doi.org/10.1007/s40306-018-0261-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40306-018-0261-4

Keywords

Mathematics Subject Classification (2010)

Navigation