Skip to main content

Advertisement

Log in

Evaluation of Pattern Recognition Algorithms for Applications on Power Factor Compensation

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper assesses different applied pattern recognition algorithms to decide the most appropriate power factor compensator for a particular point of common coupling. Power factor, current unbalance factor, total demand distortion, voltage harmonic distortion and reactive power daily variation, as well as human expertise, are the key parameters used to set each recognition algorithm. These algorithms are then trained with a series of both simulation and experimental data. Numerical results consistently indicate the decision-tree algorithm with depth 20 as the best classifier for power factor improvement in terms of all metrics considered in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abu-Hashim, R., et al. (1999). Test systems for harmonics modelling and simulations. IEEE Transactions on Power Delivery, 14(2), 579–587.

    Article  Google Scholar 

  • Andreoli, A. L., Coury, D. V., Oleskovicz, M., & Serni, P. A. (2013). Artificial neural network model of discharge lamps in the power quality context. Journal of Control, Automation and Electrical Systems, 24(3), 272–285.

    Article  Google Scholar 

  • ANEEL. (2017). Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional—PRODIST, Módulo 8—Qualidade da Energia Elétrica. Agência Nacional de Energia Elétrica – ANEEL, revisão 8, vigente a partir de January 01, 2017.

  • ANSI. (2006). Electric power systems and equipment—voltage ratings (60 Hertz). ANSI Standard C84.1-2011 (Revision of ANSI C84.1-2006).

  • Axelberg, P. G. V., Gu, I. Y. H., & Bollen, M. H. J. (2007). Support vector machine for classification of voltage disturbances. IEEE Transactions on Power Delivery, 22(3), 1297–1303.

    Article  Google Scholar 

  • Barbosa, B. H. G., & Ferreira, D. D. (2013). Classification of multiple and single power quality disturbances using a decision tree-based approach. Journal of Control, Automation and Electrical Systems, 24(5), 638–648.

    Article  Google Scholar 

  • Beyer, K., Goldstein J., Ramakrishnan, R., & Shaft U. (1999). When is nearest neighbor meaningful? In Proceedings of the 7th international conference on database theory (pp. 217–235).

  • Biet, M. (2013). Rotor faults diagnosis using feature selection and nearest neighbors rule: application to a turbogenerator. IEEE Transactions on Industrial Electronics, 60(9), 4063–4073.

    Article  Google Scholar 

  • Bollen, M. H. J., & Gu, I. Y. H. (2006). Signal processing of power quality disturbances (1st ed.). Hoboken: Wiley.

    Book  Google Scholar 

  • Breiman, L., Friedman, J., Stone, C. J., Olshen, R. A., & Stone, C. I. (1984). Classification and regression trees (1st ed.). Boca Raton: Chapman and Hall/CRC.

    MATH  Google Scholar 

  • Cerqueira, A. S., Ferreira, D. D., Ribeiro, M. V., & Duque, C. A. (2008). Power quality events recognition using a svm-based method. Elsevier Electric Power Systems Research, 78, 1546–1552.

    Article  Google Scholar 

  • Das, J. C. (2015). Power system harmonics and passive filter designs (1st ed.). Hoboken: Wiley.

    Book  Google Scholar 

  • EN 50160. (2004). Voltage characteristics of electricity supplied by public distribution systems. Standard EN 50160.

  • Galil, T. A., Kamel, M., Youssef, A. M., Saadany, E. F. E., & Salama, M. M. A. (2004). Power quality disturbance classification using the inductive inference approach. IEEE Transactions on Power Delivery, 19(4), 1812–1818.

    Article  Google Scholar 

  • Gaouda, A. M., Kanoun, S. H., & Salama, M. M. A. (2001). On-line disturbance classification using nearest neighbor rule. Elsevier Electric Power Systems Research, 57(1), 1–8.

    Article  Google Scholar 

  • Gaouda, A. M., Kanoun, S. H., Salama, M. M. A., & Chikhani, A. Y. (2002). Pattern recognition applications for power system disturbance classification. IEEE Transactions on Power Delivery, 17(3), 677–683.

    Article  Google Scholar 

  • Hajian, M., & Foroud, A. A. (2014). A new hybrid pattern recognition scheme for automatic discrimination of power quality disturbances. Elsevier Electric Power Systems Research, 51, 265–280.

    Google Scholar 

  • IEC. (1996). Electromagnetic Compatibility (EMC)—Limits—Assessment of emission limits for distorting loads in MV and HV power systems. International Electro Technical Commission Standard, 61000-3-6.

  • IEC. (2008). Electromagnetic Compatibility (EMC)—Limits—Assessment of emission limits for the connection of unbalanced installations to MV, HV and EHV power systems. International Electro Technical Commission Standard, 61000-3-13.

  • IEEE. (1990). IEEE recommended practice for electric power systems in commercial buildings, ANSI/IEEE Std. 241-1990 (Gray Book).

  • IEEE. (1993). IEEE recommended practice for electric power distribution for industrial plants, ANSI/IEEE Std. 141-1993 (Red Book).

  • IEEE. (2010). Standard definitions for the measurement of electric power quantities under sinusoidal, nonsinusoidal, balanced or unbalanced conditions. STD 1459-2010.

  • IEEE. (2014). Recommended practice and requirements for harmonic control in electric power systems. IEEE Std 519-2014 (Revision of IEEE Std 519-1992).

  • IEEE P519. (2015). IEEE draft guide for applying harmonic limits on power systems. IEEE P519.1/D12, 1-124.

  • Jamehbozorg, A., & Shahrtash, S. M. (2010). A decision-tree-based method for fault classification in single-circuit transmission lines. IEEE Transactions on Power Delivery, 25(4), 2190–2196.

    Article  Google Scholar 

  • Junior, A. M. G., Silva, V. V. R., Baccarini, L. M. R., & Reis, M. L. F. (2014). Three-phase induction motors faults recognition and classification using neural networks and response surface models. Journal of Control, Automation and Electrical Systems, 25(3), 330–338.

    Article  Google Scholar 

  • Lieberman, D. G., Troncoso, R. J. R., Rios, R. A. O., Perez, A. G., & Yepez, E. C. (2011). Techniques and methodologies for power quality analysis and disturbances classification in power systems: A review. IET Generation, Transmission & Distribution, 5(4), 519–529.

    Article  Google Scholar 

  • Livani, H., & Evrenosoglu, C. Y. (2013). A fault classification and localization method for three-terminal circuits using machine learning. IEEE Transactions on Power Delivery, 28(4), 2282–2290.

    Article  Google Scholar 

  • Monedero, I., Leon, C., Ropero, J., Garcia, A., Elena, J. M., & Montano, J. C. (2007). Classification of electrical disturbances in real time using neural networks. IEEE Transactions on Power Delivery, 22(3), 1288–1296.

    Article  Google Scholar 

  • Moravej, Z., Pazoki, M., & Khederzadeh, M. (2015). New pattern-recognition method for fault analysis in transmission line with upfc. IEEE Transactions on Power Delivery, 30(3), 1231–1242.

    Article  Google Scholar 

  • Moreira, A. C., Paredes, H. K. M., & Silva, L. C. P. (2015). Applying conservative power theory for analyzing three-phase x-ray machine impact on distribution systems. Elsevier Electric Power Systems Research, 129, 114–125.

    Article  Google Scholar 

  • NEMA. (1993). Motors and generators. NEMA Standards Publication no. MG1-1993.

  • Palácios, R. H. C., Goedtel, A., Godoy, W. F., & Fabri, J. A. (2016). Fault identification in the stator winding of induction motors using pca with artificial neural networks. Journal of Control, Automation and Electrical Systems, 27(4), 406–418.

    Article  Google Scholar 

  • Ribeiro, P. F., Duque, C. A., Silveira, P. M., & Cerqueira, A. S. (2013). Power systems processing for smart grids (1st ed.). Hoboken: Wiley.

    Book  Google Scholar 

  • Rodriguez, M. V., Troncoso, R. J. R., Rios, R. A. O., & Perez, A. G. (2014). Detection and classification of single and combined power quality disturbances using neural networks. IEEE Transactions on Industrial Electronics, 61(5), 2473–2482.

    Article  Google Scholar 

  • Samantaray, S. R. (2009). Decision tree-based fault zone identification and fault classification in flexible ac transmissions-based transmission line. IET Generation, Transmission & Distribution, 3(5), 425–436.

    Article  Google Scholar 

  • Samantaray, S. R. (2013). A data-mining model for protection of facts-based transmission line. IEEE Transactions on Power Delivery, 28(2), 612–618.

    Article  Google Scholar 

  • Santana, M. P., Monteiro, J. R. B. A., Borges, F. A. S., Paula, G. T., Almeida, T. E. P., Pereira, W. C. A., et al. (2017). Fault identification in doubly fed induction generator using fft and neural networks. Journal of Control, Automation and Electrical Systems, 28(2), 228–237.

    Article  Google Scholar 

  • Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Elsevier Information Processing & Management, 45(4), 427–437.

    Article  Google Scholar 

  • Statistics and Machine Learning Toolbox for MATLAB. (2017) MATLAB classification learner application mathworks. Retrieved October 03, 2017 from https://www.mathworks.com/help/stats/classification-learner-app.html.

  • Tenti, P., Paredes, H. K. M., & Matavelli, P. (2011). Conservative power theory, a framework to approach control and accountability issues in smart micro-grids. IEEE Transactions on Power Electronics, 26(3), 664–673.

    Article  Google Scholar 

  • Upadhyaya, S., Mohanty, S., & Bhende, C. N. (2015). Hybrid methods for fast detection and characterization of power quality disturbances. Journal of Control, Automation and Electrical Systems, 26(5), 556–566.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the contributions of São Paulo Research Foundation (FAPESP) under Grant 2016/08645-9 and by Finnish Academy and CNPq/Brazil (n.490235/2012-3) as part of the joint project SUSTAIN, by Strategic Research Council/Aka BC-DC project (n.292854) for their financial support toward the development of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre C. Moreira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, A.C., Paredes, H.K.M., de Souza, W.A. et al. Evaluation of Pattern Recognition Algorithms for Applications on Power Factor Compensation. J Control Autom Electr Syst 29, 75–90 (2018). https://doi.org/10.1007/s40313-017-0352-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-017-0352-9

Keywords

Navigation