Skip to main content
Log in

Re-evaluating the vertical mass-flux profiles of aeolian sediment at the southern fringe of the Taklimakan Desert, China

  • Published:
Journal of Arid Land Aims and scope Submit manuscript

Abstract

Reliable estimation of the mass-flux profiles of aeolian sediment is essential for predicting sediment transport rates accurately and designing measures to cope with wind-erosion. Vertical mass-flux profiles from seventeen wind-erosion events were re-evaluated using five typical models based on observed data obtained from a smooth bare field at the southern fringe of the Taklimakan Desert, China. The results showed that the exponential- function model and the logarithmic-function model exhibited the poorest fit between observed and predicted mass-flux profiles. The power-function model and the modified power-function model improved the fit to field data to an equivalent extent, while the five-parameter combined-function model with a scale constant (σ) of 0.00001 m (different from the σ value proposed by Fryear, which represented the height above which 50% of the total mass flux occurred) was verified as the best for describing the vertical aeolian sediment mass-flux profiles using goodness of fit (R 2) and the Akaike Information Criterion (AIC) values to evaluate model performance. According to relationships among model parameters, the modified power model played a prominent explanatory role in describing the vertical profiles of the observed data, whereas the exponential model played a coordinating role. In addition, it was found that the vertical profiles could not be extrapolated using the five selected models or easily estimated using an efficient model without field observations by a near-surface sampler at 0 to 0.05 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6): 716–723.

    Article  Google Scholar 

  • Anderson R S, Hallet B. 1986. Sediment transport by wind: Toward a general model. Geological Society of America Bulletin, 97(5): 523–535.

    Article  Google Scholar 

  • Anderson R S, Haff P K. 1988. Simulation of eolian saltation. Science, 241(4857): 820–823.

    Article  Google Scholar 

  • Anderson R S, Sørensen M, Willetts B B. 1991. A review of recent progress in our understanding of Aeolian sediment transport. In: Barndorff-Nielsen O E, Willetts B B. Aeolian Grain Transport: Mechanics. Acta Mechanica Supplementum. Vienna: Springer, 1: 1–19.

    Article  Google Scholar 

  • Bagnold R A. 1937. The transport of sand by wind. The Geographical Journal, 89(5): 409–438.

    Article  Google Scholar 

  • Bagnold R A. 1941. The Physics of Blown Sand and Desert Dunes. New York: William Morrow & Company, 12–36.

    Google Scholar 

  • Butterfield G R. 1999. Near-bed mass flux profiles in Aeolian sand transport: high-resolution measurements in a wind tunnel. Earth Surface Processes and Landforms, 24(5): 393–412.

    Article  Google Scholar 

  • Chen W N, Yang Z T, Zhang J S, et al. 1996. Vertical distribution of wind-blown sand flux in the surface layer, Taklamakan Desert, Central Asia. Physical Geography, 17(3): 193–218.

    Google Scholar 

  • Chepil W S. 1945. Dynamics of wind erosion: I. Nature of movement of soil by wind. Soil Science, 60(4): 305–320.

    Google Scholar 

  • Dong Z B, Liu X P, Wang H T, et al. 2003. The flux profile of a blowing sand cloud: a wind tunnel investigation. Geomorphology, 49(3–4): 219–230.

    Article  Google Scholar 

  • Dong Z B, Qian G Q. 2007. Characterizing the height profile of the flux of wind-eroded sediment. Environmental Geology, 51(5): 835–845.

    Article  Google Scholar 

  • Dong Z B, Lu J F, Man D Q, et al. 2011. Equations for the near-surface mass flux density profile of wind-blown sediments. Earth Surface Processes and Landforms, 36(10): 1292–1299.

    Article  Google Scholar 

  • Du H Q, Xue X, Wang T. 2014. Estimation of the quantity of aeolian saltation sediments blown into the Yellow River from the Ulanbuh Desert, China. Journal of Arid Land, 6(2): 205–218.

    Article  Google Scholar 

  • Fryrear D W. 1987. Aerosol measurements from 31 dust storms. In: Ariman T, Veziroglu T N. Particulate and Multiphase Flows: Contamination Analysis and Control. New York: Hemisphere, 407–415.

    Google Scholar 

  • Fryrear D W, Stout J E, Hagen L J, et al. 1991. Wind erosion: field measurement and analysis. Transactions of the American Society of Agricultural and Biological Engineers, 34(1): 155–160.

    Article  Google Scholar 

  • Fryrear D W, Saleh A. 1993. Field wind erosion: vertical distribution. Soil Science, 155(4): 294–300.

    Article  Google Scholar 

  • Gillette D A, Fryrear D W, Xiao J B, et al. 1997. Large-scale variability of wind erosion mass flux rates at Owens Lake, 1. Vertical profiles of horizontal mass fluxes of wind-eroded particles with diameter greater than 50 µm. Journal of Geophysical Research, 102(22): 25977–25987.

    Google Scholar 

  • Greeley R, Blumberg D G, Williams S H. 1996. Field measurements of the flux and speed of wind-blown sand. Sedimentology, 43(1): 41–52.

    Article  Google Scholar 

  • Griffin D W, Kellogg C A, Shinn E A. 2001. Dust in the wind: Long range transport of dust in the atmosphere and its implications for global public and ecosystem health. Global Change and Human Health, 2(1): 20–33.

    Article  Google Scholar 

  • Ikazaki K, Shinjo H, Tanaka U, et al. 2011. Field-scale Aeolian sediment transport in the Sahel, West Africa. Soil Science Society of America Journal, 75(5): 1885–1897.

    Article  Google Scholar 

  • Kok J F, Renno N O. 2009. A comprehensive numerical model of steady state saltation (COMSALT). Journal of Geophysical Research, 114(D17), doi: 10.1029/2009JD011702.

    Google Scholar 

  • Lal R. 1990. Soil Erosion in the Tropics: Principles and Management. New York: McGraw-Hill.

    Google Scholar 

  • Lal R. 2001. Soil degradation by erosion. Land Degradation & Development, 12(6): 519–539.

    Article  Google Scholar 

  • Leys J F, Mc Tainsh G H. 1996. Sediment fluxes and particle grain-size characteristics of wind-eroded sediments in southeastern Australia. Earth Surface Processes and Landforms, 21(7): 661–671.

    Article  Google Scholar 

  • McEwan I K, Willetts B B. 1991. Numerical model of the saltation cloud. In: Barndorff-Nielsen O E, Willetts B B. Aeolian Grain Transport: Mechanics. Acta Mechanica Supplementum. Vienna: Springer, 1: 53–66.

    Article  Google Scholar 

  • Mertia R S, Santra P, Kandpal B K, et al. 2010. Mass-height profile and total mass transport of wind eroded Aeolian sediments from rangelands of the Indian Thar Desert. Aeolian Research, 2(2–3): 135–142.

    Article  Google Scholar 

  • Nalpanis P. 1985. Saltating and suspended particles over flat and sloping surfaces: II. Experiments and numerical simulations. In: Barndorff-Nielsen O E, Møller J T, Rasmussen K R, et al. Proceedings of International Workshop on the Physics of Blown Sand. Denmark: Aarhus University, 37–66.

    Google Scholar 

  • Namikas S L. 2003. Field measurement and numerical modelling of aeolian mass flux distributions on a sandy beach. Sedimentology, 50(2): 303–326.

    Article  Google Scholar 

  • Ni J R, Li Z S, Mendoza C. 2002. Vertical profiles of Aeolian sand mass flux. Geomorphology, 49(3–4): 205–218.

    Google Scholar 

  • Owen P R. 1964. The saltation of uniform sand in air. Journal of Fluid Mechanics, 20(2): 225–242.

    Article  Google Scholar 

  • Panebianco J E, Buschiazzo D E, Zobeck T M. 2010. Comparison of different mass transport calculation methods for wind erosion quantification purposes. Earth Surface Processes and Landforms, 35(13): 1548–1555.

    Article  Google Scholar 

  • Pettke T, Halliday A N, Hall C M, et al. 2000. Dust production and deposition in Asia and the north Pacific Ocean over the past 12 Myr. Earth and Planetary Science Letters, 178(3–4): 397–413.

    Article  Google Scholar 

  • Shao Y, Mctainsh G H, Leys J F, et al. 1993. Efficiencies of sediment samplers for wind erosion measurement. Australian Journal of Soil Research, 31(4): 519–532.

    Article  Google Scholar 

  • Shao Y P, Raupach M R. 1992. The overshoot and equilibration of saltation. Journal of Geophysical Research, 97(D18): 20559–20564.

    Article  Google Scholar 

  • Shao Y P. 2009. Physics and Modelling of Wind Erosion (2nd ed.). Boston: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Shi F, Huang N. 2010. Computational simulations of blown sand fluxes over the surfaces of complex microtopography. Environmental Modelling and Software, 25(3): 362–367.

    Article  Google Scholar 

  • Sørensen M. 1991. An analytic model of wind-blown sand transport. In: Barndorff-Nielsen O E, Willetts B B. Aeolian Grain Transport: Mechanics. Acta Mechanica Supplementum. Vienna: Springer, 1: 67–82.

    Article  Google Scholar 

  • Sterk G, Raats P A C. 1996. Comparison of models describing the vertical distribution of wind-eroded sediment. Soil Science Society of America Journal, 60(6): 1914–1919.

    Article  Google Scholar 

  • Stout J E, Zobeck T M. 1996. The Wolfforth field experiment: a wind erosion study. Soil Science, 161(9): 616–632.

    Article  Google Scholar 

  • Takeuchi M. 1980. Vertical profile and horizontal increase of drift-snow transport. Journal of Glaciology, 26(94): 481–498.

    Google Scholar 

  • Ungar J E, Haff P K. 1987. Steady state saltation in air. Sedimentology, 34(2): 289–299.

    Article  Google Scholar 

  • Vories E D, Fryrear D W. 1991. Vertical distribution of wind-eroded soil over a smooth, bare field. Transactions of the Asae, 34:1763–1768.

    Article  Google Scholar 

  • Werner B T. 1990. A steady-state model of wind-blown sand transport. The Journal of Geology, 98(1): 1–17.

    Article  Google Scholar 

  • White B R. 1982. Two-phase measurements of saltating turbulent boundary layer flow. International Journal of Multiphase Flow, 8(5): 459–473.

    Article  Google Scholar 

  • Williams G. 1964. Some aspects of the Aeolian saltation load. Sedimentology, 3(4): 257–287.

    Article  Google Scholar 

  • Yang X H, He Q, Mamtimin A, et al. 2012. A field experiment on dust emission by wind erosion in the Taklimakan Desert. Acta Meteorologica Sinica, 26(2): 241–249.

    Article  Google Scholar 

  • Zheng X J, He L H, Wu J J. 2004. Vertical profiles of mass flux for windblown sand movement at steady state. Journal of Geophysical Research, 109(B1), doi: 10.1029/2003JB002656.

    Google Scholar 

  • Zheng X J. 2009. Mechanics of Wind-blown Sand Movements. Berlin: Springer.

    Book  Google Scholar 

  • Zingg A W. 1953. Wind tunnel studies of the movement of sedimentary material. In: Proceedings of the 5th Hydraulics Conference. Bulletin. Iowa City: Institute of Hydraulics, 111–135.

    Google Scholar 

  • Zobeck T M, Sterk G, Funk R, et al. 2003. Measurement and data analysis methods for field-scale wind erosion studies and model validation. Earth Surface Processes and Landforms, 28(11): 1163–1188.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaqiang Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Lei, J., Li, S. et al. Re-evaluating the vertical mass-flux profiles of aeolian sediment at the southern fringe of the Taklimakan Desert, China. J. Arid Land 7, 765–777 (2015). https://doi.org/10.1007/s40333-015-0134-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40333-015-0134-9

Keywords

Navigation