Skip to main content
Log in

Impact of land use/cover changes on carbon storage in a river valley in arid areas of Northwest China

  • Published:
Journal of Arid Land Aims and scope Submit manuscript

Abstract

Soil carbon pools could become a CO2 source or sink, depending on the directions of land use/cover changes. A slight change of soil carbon will inevitably affect the atmospheric CO2 concentration and consequently the climate. Based on the data from 127 soil sample sites, 48 vegetation survey plots, and Landsat TM images, we analyzed the land use/cover changes, estimated soil organic carbon (SOC) storage and vegetation carbon storage of grassland, and discussed the impact of grassland changes on carbon storage during 2000 to 2013 in the Ili River Valley of Northwest China. The results indicate that the areal extents of forestland, shrubland, moderate-coverage grassland (MCG), and the waterbody (including glaciers) decreased while the areal extents of high-coverage grassland (HCG), low-coverage grassland (LCG), residential and industrial land, and cultivated land increased. The grassland SOC density in 0–100 cm depth varied with the coverage in a descending order of HCG>MCG>LCG. The regional grassland SOC storage in the depth of 0–100 cm in 2013 increased by 0.25×1011 kg compared with that in 2000. The regional vegetation carbon storage (Srvc) of grassland was 5.27×109 kg in 2013 and decreased by 15.7% compared to that in 2000. The vegetation carbon reserves of the under-ground parts of vegetation (Sruvb) in 2013 was 0.68×109 kg and increased by approximately 19.01% compared to that in 2000. This research can improve our understanding about the impact of land use/cover changes on the carbon storage in arid areas of Northwest China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batjes N H, Sombroek W G. 1997. Possibilities for carbon sequestration in tropical and subtropical soils. Global Change Biology, 3(2): 161–173.

    Article  Google Scholar 

  • BatjesN H, Dijkshoorn J A. 1999. Carbon and nitrogen stocks in the soils of the Amazon Region. Geoderma, 89(3–4): 273–286.

    Article  Google Scholar 

  • Chai X, Liang C Z, Liang M W, et al. 2014. Seasonal dynamics of belowground biomass and productivity and potential of carbon sequestration in meadow steppe and typical steppe, in Inner Mongolia, China. Acta Ecologica Sinica, 34(19): 5530–5540. (in Chinese)

    Google Scholar 

  • Chen Z S, Chen Y N, Li W H, et al. 2010. Evaluating effect of land use change on environment in Ili Valley based on ecosystem service value analysis. Journal of Desert Research, 30(4): 870–877. (in Chinese)

    Google Scholar 

  • Cheng S L, Ouyang H, Niu H S, et al. 2004. Temporal-spatial dynamic analysis of soil organic carbon in inversed desertification area: A case study in Yulin County, Shaanxi Province. Acta Geographica Sinica, 59(4): 505–513. (in Chinese)

    Google Scholar 

  • Deng L, Shangguan Z P, Sweeney S. 2014. “Grain for Green” driven land use change and carbon sequestration on the Loess Plateau, China. Scientific Reports, 4: 7039.

    Article  Google Scholar 

  • Don A, Schumacher J, Scherer-Lorenzen M, et al. 2007. Spatial and vertical variation of soil carbon at two grassland sites-implications for measuring soil carbon stocks. Geoderma, 141(3–4): 272–282.

    Article  Google Scholar 

  • Fang J Y, Guo Z D, Piao S L, et al. 2007. Terrestrial vegetation carbon sinks in China, 1981–2000. Science in China Series D: Earth Sciences, 50(9): 1341–1350.

    Article  Google Scholar 

  • Fu H, Chen Y N, Wang Y R, et al. 2004. Organic carbon content in major grassland types in Alex, Inner Mongolia. Acta Ecologica Sinica, 24(3): 469–476. (in Chinese)

    Google Scholar 

  • Jia X H, Zhou H Y, Li X R. 2004. Primary conclusion of soil organic carbon and total nitrogen variation in planted sand regions without irrigation. Journal of Desert Research, 24(4): 437–441. (in Chinese)

    Google Scholar 

  • Jobbágy E G, Jackson R B. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2): 423–436.

    Article  Google Scholar 

  • Kang L, Zhang H Q. 2012. Assessment of the land desertification sensitivity of newly reclaimed area in Yili, Xinjiang. Resources Science, 34(5): 896–902. (in Chinese)

    Google Scholar 

  • Laboratory of Soil Physics, Institute of Soil Science, Chinese Academy of Sciences. 1978. Methods of Soil Physic Measurement. Beijing: Science Press. (in Chinese)

    Google Scholar 

  • Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677): 1623–1627.

    Article  Google Scholar 

  • Lal R. 2009. Sequestering carbon in soils of arid ecosystems. Land Degradation & Development, 20(4): 441–454.

    Article  Google Scholar 

  • Liu M Y, Bao A M, Chen X, et al. 2010. Impact of land use/cover change on the vegetation carbon storage in the Manas River Basin between 1976 and 2007. Journal of Natural Resources, 25(6): 926–938. (in Chinese)

    Google Scholar 

  • Ma A N, Yu G R, He N P, et al. 2014. Above-and below ground biomass relationships in China's Grassland vegetation. Quaternary Sciences, 34(4): 769–776. (in Chinese)

    Google Scholar 

  • Ma W H, Fang J Y, Yang Y H, et al. 2010. Biomass carbon stocks and their changes in northern China’s grasslands during 1982–2006. Science China Life Sciences, 53(7): 841–850.

    Article  Google Scholar 

  • McLauchlan K K, Hobbie S E, Post W M. 2006. Conversion from agriculture to grassland builds soil organic matter on decadal timescales. Ecological Applications, 16(1): 143–153.

    Article  Google Scholar 

  • Mokany K, Raison R J, Prokushkin A S. 2006. Critical analysis of root: Shoot ratios in terrestrial biomes. Global Change Biology, 12(1): 84–96.

    Article  Google Scholar 

  • Post W M, Kwon K C. 2000. Soil carbon sequestration and land-use change: processes and potential. Global Change Biology, 6(3): 317–327.

    Article  Google Scholar 

  • Song X H, Peng C H, Zhou G M, et al. 2014. Chinese Grain for Green Program led to highly increased soil organic carbon levels: A meta-analysis. Scientific Reports, 4: 4460.

    Article  Google Scholar 

  • Stockmann U, Adams M A, Crawford J W, et al. 2013. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 164: 80–99.

    Article  Google Scholar 

  • Sun C L, Xue S, Chai Z Z, et al. 2016. Effects of land-use types on the vertical distribution of fractions of oxidizable organic carbon on the Loess Plateau, China. Journal of Arid Land, 8(2): 221–231.

    Article  Google Scholar 

  • Tarnocai C, Canadell J G, Schuur E A G, et al. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23(2): 2607–2617.

    Article  Google Scholar 

  • Wang J L, Chang T J, Li P, et al. 2009. The vegetation carbon reserve and its spatial distribution configuration of grassland ecosystem in Tibet. Acta Ecologica Sinica, 29(2): 931–938. (in Chinese)

    Article  Google Scholar 

  • Wang Q, Zhang L, Li L, et al. 2009. Changes in carbon and nitrogen of Chernozem soil along a cultivation chronosequence in a semi-arid grassland. European Journal of Soil Science, 60(6): 916–923.

    Article  Google Scholar 

  • Wang S Q, Zhou C H. 1999. Estimating soil carbon reservoir of terrestrial ecosystem in China. Geographical Research, 18(4): 349–356. (in Chinese)

    Google Scholar 

  • Were K, Singh B R, Dick Ø B. 2016. Spatially distributed modelling and mapping of soil organic carbon and total nitrogen stocks in the Eastern Mau Forest Reserve, Kenya. Journal of Geographical Sciences, 26(1): 102–124.

    Article  Google Scholar 

  • Xie X L, Sun B, Zhou H Z, et al. 2004. Soil carbon stocks and their influencing factors under native vegetation in China. Acta Pedologica Sinica, 41(5): 687–699. (in Chinese)

    Google Scholar 

  • Yang Y H, Chen Y N, Li W H, et al. 2010. Distribution of soil organic carbon under different vegetation zones in the Ili River Valley, Xinjiang. Journal of Geographical Sciences, 20(5): 729–740.

    Article  Google Scholar 

  • Yao MK, Angui P K T, Konaté S, et al. 2010. Effects of land use types on soil organic carbon and nitrogen dynamics in MidWest Côte d'Ivoire. European Journal of Scientific Research, 40: 211–222.

    Google Scholar 

  • Zhou L, Li B G, Zhou G S. 2005. Advances in controlling factors of soil organic carbon. Advances in Earth Science, 20(1): 99–105. (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science and Technology Support Plan (2014BAC15B03), the National Natural Science Foundation of China (41371503, 41371128) and the West Light Foundation of the Chinese Academy of Sciences (YB201302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Li, W., Zhu, C. et al. Impact of land use/cover changes on carbon storage in a river valley in arid areas of Northwest China. J. Arid Land 9, 879–887 (2017). https://doi.org/10.1007/s40333-017-0106-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40333-017-0106-3

Keywords

Navigation