Skip to main content
Log in

Meteorological impacts on evapotranspiration in different climatic zones of Pakistan

  • Published:
Journal of Arid Land Aims and scope Submit manuscript

Abstract

Arid regions are highly vulnerable and sensitive to drought. The crops cultivated in arid zones are at high risk due to the high evapotranspiration and water demands. This study analyzed the changes in seasonal and annual evapotranspiration (ET) during 1951–2016 at 50 meteorological stations located in the extremely arid, arid, and semi-arid zones of Pakistan using the Penman Monteith (PM) method. The results show that ET is highly sensitive and positively correlated to temperature, solar radiation, and wind speed whereas vapor pressure is negatively correlated to ET. The study also identifies the relationship of ET with the meteorological parameters in different climatic zones of Pakistan. The significant trend analysis of precipitation and temperature (maximum and minimum) are conducted at 95% confidence level to determine the behaviors of these parameters in the extremely arid, arid, and semi-arid zones. The mean annual precipitation and annual mean maximum temperature significantly increased by 0.828 mm/a and 0.014°C/a in the arid and extremely arid zones, respectively. The annual mean minimum temperature increased by 0.017°C/a in the extremely arid zone and 0.019°C/a in the arid zone, whereas a significant decrease of 0.007°C/a was observed in the semi-arid zone. This study provides probabilistic future scenarios that would be helpful for policy-makers, agriculturists to plan effective irrigation measures towards the sustainable development in Pakistan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adnan S. 2009. Agro-climatic classification of Pakistan. MSc Thesis. Islamabad, Pakistan: COMSATS Institute of Information Technology (CIIT). [2014-10-29]. https://www.researchgate.net/publication/261700354_Agroclimatic_Classification_of_Pakistan.

    Google Scholar 

  • Adnan S, Khan A H. 2009. Effective rainfall for irrigated agriculture plains of Pakistan. Pakistan Journal of Meteorology, 6(11): 61–72.

    Google Scholar 

  • Adnan S, Ullah K, Gao S. 2016. Investigations into precipitation and drought climatology in South Central Asia with special focus on Pakistan over the period 1951–2010. Journal of Climate, 29(16): 6019–6035.

    Article  Google Scholar 

  • Adnan S, Ullah K, Gao S, et al. 2017. Shifting of agro-climatic zones, their drought vulnerability, and precipitation and temperature trends in Pakistan. International Journal of Climatology, 37(Suppl.): 529–543.

    Article  Google Scholar 

  • Afzaal M, Haroon M A, Zaman Q U. 2009. Interdecadal oscillations and the warming trend in the area-weighted annual mean temperature of Pakistan. Pakistan Journal of Meteorology, 6(11): 13–19.

    Google Scholar 

  • Ali M H, Adham A K M, Rahman M M, et al. 2009. Sensitivity of Penman-Monteith estimates of reference evapotranspiration to errors in input climatic data. Journal of Agrometeorology, 11(1): 1–8.

    Google Scholar 

  • Allen R G, Pereira L S, Raes D, et al. 1998. Crop evapotranspiration-guidelines for computing crop water requirements. In: FAO Irrigation and Drainage Paper 56. Rome, Italy: FAO, 300(9): D05109.

    Google Scholar 

  • Bultot F, Dupriez G L, Gellens D. 1988. Estimated annual regime of energy-balance components, evapotranspiration and soil moisture for a drainage basin in the case of a CO2 doubling. Climatic Change, 12(1): 39–56.

    Article  Google Scholar 

  • Chaudhary Q Z, Rasul G. 2003. Agro-climatic classification of Pakistan. Science Vision, 9(1–2): 59–66.

    Google Scholar 

  • Claussen M. 1997. Modeling bio–geophysical feedback in the African and Indian monsoon region. Climate Dynamics, 13(4): 247–257.

    Article  Google Scholar 

  • Donat M G, Lowry A L, Alexander L V, et al. 2017. Addendum: More extreme precipitation in the world’s dry and wet regions. Nature Climate Change, 7(2): 154–158.

    Article  Google Scholar 

  • Doorenbos J, Pruitt, W O. 1977. Crop water requirements. In: FAO Irrigation and Drainage Paper 24. Rome, Italy: FAO, 144.

    Google Scholar 

  • Eagleson P S. 1978. Climate, soil, and vegetation: 1. Introduction to water balance dynamics. Water Resources Research, 14(5): 705–712.

    Article  Google Scholar 

  • Feddema J J. 1999. Future African water resources: interactions between soil degradation and global warming. Climatic Change, 42(3): 561–596.

    Article  Google Scholar 

  • Gad H E, El–Gayar S M. 2010. Effect of solar radiation on the crops evapotranspiration in Egypt. In: The 14th International Water Technology Conference. Cairo, Egypt: IWTC, 769–783.

    Google Scholar 

  • Gong L B, Xu C Y, Chen D L, et al. 2006. Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. Journal of Hydrology, 329(3–4): 620–629.

    Article  Google Scholar 

  • Goyal R K. 2004. Sensitivity of evapotranspiration to global warming: a case study of arid zone of Rajasthan (India). Agricultural Water Management, 69(1): 1–11.

    Article  Google Scholar 

  • Haider S, Adnan S. 2014. Classification and assessment of aridity over Pakistan provinces (1960–2009). International Journal of Environment, 3(4): 24–35.

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R. 2012. Perception of climate change. Proceedings of the National Academy of Sciences of the United States of America, 109(37): e2415–E2423.

    Article  Google Scholar 

  • Held I M, Soden B J. 2006. Robust responses of the hydrological cycle to global warming. Journal of Climate, 19(21): 5686–5699.

    Article  Google Scholar 

  • Iglesias A, Lopez Corcoles H, Canadas W, et al. 1994. Current and future strategies for water use optimization in corn hybrids of different growth durations under climate change scenarios. In: Proceedings of the 3rd Congress of the European Society for Agronomy. Abano–Padova: Padova University, 374–375.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). 2007. Summary for policymakers. In: Solomon S, Qin D, Manning M, et al. Climate Change 2007: the Physical Science Basis-Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 996.

    Chapter  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC, 151.

    Book  Google Scholar 

  • Isikwue C B, Audu O M, Isikwue O M. 2014. Evaluation of evapotranspiration using FAO penman–monteith method in Kano Nigeria. International Journal of Science and Technology, 3(11): 698–703.

    Google Scholar 

  • Kendall M G. 1975. Rank Correlation Measures. London: Charles Griffin, 202.

    Google Scholar 

  • Khan J A. 1993. The Climate of Pakistan. Karachi: Rehber Publishers, 79.

    Google Scholar 

  • Khan S U, Hassan M, Khan F K, et al. 2010. Climate Classification of Pakistan. Ohrid: Balwois, 1–47.

    Google Scholar 

  • Kruss P O, Khan K A Y, Malik F M Q, et al. 1992. Cooling over monsoonal Pakistan. In: Proceedings of the 5th International Meeting on Statistical Climatology. Toronto: Environment Canada, 27.

    Google Scholar 

  • Le Houerou H N. 1993. Climate change and drought desertifisation. Revue Sécheresse, 4(2): 95–111.

    Google Scholar 

  • Liu Q, Yang Z F, Cui B S, et al. 2010. The temporal trends of reference evapotranspiration and its sensitivity to key meteorological variables in the Yellow River Basin, China. Hydrological Processes, 24(15): 2171–2181.

    Google Scholar 

  • Mamassis N, Panagoulia D, Novcovic A. 2014. Sensitivity analysis of Penman evaporation method. Global Network for Environmental Science and Technology, 16(4): 628–639.

    Google Scholar 

  • Mann H B. 1945. Non–parametric tests against trend. Econometrica, 13: 245–259.

    Article  Google Scholar 

  • Martin P, Rosenberg N J, McKenney M S. 1989. Sensitivity of evapotranspiration in a wheat field, a forest, and a grassland to changes in climate and direct effects of carbon dioxide. Climatic Change, 14(2): 117–151.

    Article  Google Scholar 

  • Mavi H S. 1986. Introduction to Agrometeorology. New Delhi: Oxford and IBH Publishing Co., 82–97.

    Google Scholar 

  • Michael A M. 1986. Irrigation Theory and Practice. Sahibabad: Vani Educational Books, 512–537.

    Google Scholar 

  • Monteith J L. 1965. Evaporation and environment. In: Fogg G E. The State and Movement of Water in Living Organisms. New York: Academic Press, 205–234.

    Google Scholar 

  • Sabziparvar A A, Tabari H. 2010. Regional estimation of reference evapotranspiration in arid and semiarid regions. Journal of Irrigation and Drainage Engineering, 136(10): 724–731.

    Article  Google Scholar 

  • Sen P K. 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63(324): 1379–1389.

    Article  Google Scholar 

  • Shamshad K M. 1988. The Meteorology of Pakistan: Climate and Weather of Pakistan. Karachi: Royal Book Company Publishers, 313.

    Google Scholar 

  • Singh N, Sontakke N A. 1996. Climate variability over Pakistan and its relationship to variations over the Indian region. In: Abrol Y P, Gadgil S, Pant G B. Climate Variability and Agriculture. New Delhi: Narosa Publishing House, 67–95.

    Google Scholar 

  • Smakhtin V U, Schipper E L F. 2008. Droughts: The impact of semantics and perceptions. Water Policy, 10(2): 131–143.

    Article  Google Scholar 

  • Subramanya K. 1984. Engineering Hydrology. New Delhi: Tata McGraw–Hill Publishing Company, 48–82.

    Google Scholar 

  • Subramanya K. 2008. Engineering Hydrology (3rd ed.). New Delhi: Tata McGraw–Hill Publishing Company, 60–80.

    Google Scholar 

  • Viessman W Jr, Knapp W J, Lewis L G, et al. 1977. Introduction to Hydrology (2nd ed.). New York: IEP, Dun-Donnelley Publishing Corporation, 704.

    Google Scholar 

  • Wilson E M. 1974. Engineering Hydrology. Hampshir: MacMillan Education Ltd, 34–52.

    Book  Google Scholar 

  • Xu C Y, Gong L B, Jiang T, et al. 2006. Decreasing reference evapotranspiration in a warming climate–a case of Changjiang (Yangtze) River catchment during 1970–2000. Advances in Atmospheric Sciences, 23(4): 513–520.

    Article  Google Scholar 

  • Zahid M, Rasul G. 2011. Thermal classification of Pakistan. Atmospheric and Climate Sciences, 1(4): 206–213.

    Article  Google Scholar 

  • Zhao L W, Zhao W Z. 2014. Evapotranspiration of an oasis–desert transition zone in the middle stream of Heihe River, Northwest China. Journal of Arid Land, 6(5): 529–539.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank two anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahzada Adnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adnan, S., Ullah, K., Khan, A.H. et al. Meteorological impacts on evapotranspiration in different climatic zones of Pakistan. J. Arid Land 9, 938–952 (2017). https://doi.org/10.1007/s40333-017-0107-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40333-017-0107-2

Keywords

Navigation