Skip to main content
Log in

Control policies used for semi-active damper for automotive seating system: a review

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

Control polices with semi-active and active devices such as magnetorheological (MR) damper, magnetorheological isolator, magnetorheological mount, electrorheological dampers, actuators and pneumatics are integrated with automotive seating system (ASS) for seating and ride comfort. Semi-active device has been developed to replace the traditional static spring and damper system for reducing the acceleration of the human body. The current work reviews various control policies like PID, GA-PID, PSO-PID, MR on–off, FLC, Skyhook, etc., used for controlling the vibration level of ASS. This review study finds that adoption of cost effective intelligent vibration control policies with adoptive solutions will improve the ride comfort and will be made available in all ASS in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. International Organization for Standardization (1997) Mechanical vibration and shock-evaluation of human exposure to whole-body vibration-part 1: general requirements

  2. Griffin MJ (1996) Handbook of human vibration. Academic Press, London

    Google Scholar 

  3. Hiemstravan Mastrigt S, Groenesteijn L, Vink P, Kuijt-Evers LF (2017) Predicting passenger seat comfort and discomfort on the basis of human, context and seat characteristics: a literature review. Ergonomics 60(7):889–911

    Article  Google Scholar 

  4. Fischer D, Kaus E, Isermann R (2003) Fault detection for an active vehicle suspension. In: Proceedings of the American control conference, 2003, vol 5. IEEE, pp 4377–4382

  5. Ning D, Sun S, Du H, Li W (2017) Integrated active and semi-active control for seat suspension of a heavy duty vehicle. J of Intell Mater Syst Struct. https://doi.org/10.1177/1045389X17721032

    Google Scholar 

  6. Sahin I, Engin T, Cesmeci S (2010) Comparison of some existing parametric models for magnetorheological fluid dampers. Smart Mater Struct 19(3):035012

    Article  Google Scholar 

  7. Nieto AJ, Morales AL, Chicharro JM, Pintado P (2016) An adaptive pneumatic suspension system for improving ride comfort and handling. J Vib Control 22(6):1492–1503

    Article  Google Scholar 

  8. Crivellaro C, Alves SJ (2006) Phenomenological model of a magneto-rheological damper for semi-active suspension control design and simulation (no. 2006-01-2520). SAE technical paper

  9. Ahn KK (2014) Active pneumatic vibration isolation system using negative stiffness structures for a vehicle seat. J Sound Vib 333(5):1245–1268

    Article  Google Scholar 

  10. Maciejewski I, Meyer L, Krzyzynski T (2010) The vibration damping effectiveness of an active seat suspension system and its robustness to varying mass loading. J Sound Vib 329(19):3898–3914

    Article  Google Scholar 

  11. Choi SB, Nam MH, Lee BK (2000) Vibration control of a MR seat damper for commercial vehicles. J Intell Mater Syst Struct 11(12):936–944

    Article  Google Scholar 

  12. Lee HS, Choi SB (2000) Control and response characteristics of a magneto-rheological fluid damper for passenger vehicles. J Intell Mater Syst Struct 11(1):80–87

    Article  Google Scholar 

  13. Lai CY, Liao WH (2002) Vibration control of a suspension system via a magnetorheological fluid damper. Modal Anal 8(4):527–547

    Article  Google Scholar 

  14. Cao J, Liu H, Li P, Brown DJ (2008) State of the art in vehicle active suspension adaptive control systems based on intelligent methodologies. IEEE Trans Intell Transp Syst 9(3):392–405

    Article  Google Scholar 

  15. Du H, Sze KY, Lam J (2005) Semi-active H∞ control of vehicle suspension with magneto-rheological dampers. J Sound Vib 283(3):981–996

    Article  Google Scholar 

  16. Nusantoro GD, Priyandoko G (2011) PID state feedback controller of a quarter car active suspension system. J Basic Appl Sci Res 1(11):2304–2309

    Google Scholar 

  17. Ahmadian M, Pare CA (2000) A quarter-car experimental analysis of alternative semiactive control methods. J Intell Mater Syst Struct 11(8):604–612

    Article  Google Scholar 

  18. Maciejewski I (2012) Control system design of active seat suspensions. J Sound Vib 331(6):1291–1309

    Article  Google Scholar 

  19. Choi SB, Sung KG (2008) Vibration control of magnetorheological damper system subjected to parameter variations. Int J Veh Des 46(1):94–110

    Article  Google Scholar 

  20. Zribi M, Karkoub M (2004) Robust control of a car suspension system using magnetorheological dampers. Modal Anal 10(4):507–524

    MATH  Google Scholar 

  21. Guo DL, Hu HY, Yi JQ (2004) Neural network control for a semi-active vehicle suspension with a magnetorheologicaldamper. J Vib Control 10(3):461–471

    MATH  Google Scholar 

  22. Metered H, Bonello P, Oyadiji SO (2010) An investigation into the use of neural networks for the semi-active control of a magnetorheologically damped vehicle suspension. Proc Inst Mech Eng Part D J Automob Eng 224(7):829–848

    Article  Google Scholar 

  23. Ning D, Sun S, Wei L, Zhang B, Du H, Li W (2017) Vibration reduction of seat suspension using observer based terminal sliding mode control with acceleration data fusion. Mechatronics 44:71–83

    Article  Google Scholar 

  24. Nagarkar MP, Vikhe GJ, Borole KR, Nandedkar VM (2011) Active control of quarter-car suspension system using linear quadratic regulator. Int J Automot Mech Eng 3(1):364–372

    Article  Google Scholar 

  25. Gad S, Metered H, Bassuiny A, Abdel Ghany AM (2015) Vibration control of semi-active MR seat suspension for commercial vehicles using genetic PID controller. In: Sinha J (ed) Vibration engineering and technology of machinery. Mechanisms and machine science, vol 23. Springer, Cham, pp 721–732

  26. Rashid MM, Rahim NA, Hussain MA, Rahman MA (2011) Analysis and experimental study of magnetorheological-based damper for semiactive suspension system using fuzzy hybrids. IEEE Trans Ind Appl 47(2):1051–1059

    Article  Google Scholar 

  27. Aggarwal ML (2015) Fuzzy control of passenger ride performance using MR shock absorber suspension in quarter car model. Int J Dyn Control 3(4):463–469

    Article  MathSciNet  Google Scholar 

  28. Singh D (2018) Modeling and control of passenger body vibrations in active quarter car system: a hybrid ANFIS PID approach. Int J Dyn Control. https://doi.org/10.1007/s40435-018-0409-z

    MathSciNet  Google Scholar 

  29. Karnopp D, Crosby MJ, Harwood RA (1974) Vibration control using semi-active force generators. J Eng Ind 96(2):619–626

    Article  Google Scholar 

  30. Segla S, Orecny M (2014) Balance control of semi-active seat suspension with elimination of dynamic jerk. Procedia Eng 96:419–427

    Article  Google Scholar 

  31. Segla S, Reich S (2007) Optimization and comparison of passive, active, and semi-active vehicle suspension systems. In: 12th IFToMM world congress, Besancon, France

  32. Yi K, Song BS (1999) A new adaptive skyhook control of vehicle semi-active suspensions. Proc Inst Mech Eng Part D J Autom Eng 213(3):293–303

    Article  Google Scholar 

  33. Kafafy El, Mahmoud El-Demerdash S M, Rabeih AAM (2012) Automotive ride comfort control using MR fluid damper. Engineering 4(4):179–187

    Article  Google Scholar 

  34. Balamurugan L, Jancirani J, Eltantawie MA (2014) Generalized magnetorheological (MR) damper model and its application in semi-active control of vehicle suspension system. Int J Automot Technol 15(3):419–427

    Article  Google Scholar 

  35. Huang W, Xu J, Zhu DY, Wu YL, Lu JW, Lu KL (2015) Semi-active vibration control using a magneto rheological (MR) damper with particle swarm optimization. Arab J Sci Eng 40(3):747–762

    Article  Google Scholar 

  36. Dong XM, Yu M, Liao CR, Chen WM (2010) Comparative research on semi-active control strategies for magneto-rheological suspension. Nonlinear Dyn 59(3):433–453

    Article  MATH  Google Scholar 

  37. Shiao Y, Lai CC, Nguyen QA (2010) The analysis of a semi-active suspension system. In: Proceedings of SICE annual conference 2010. IEEE, pp 2070–2082

  38. Liu Y, Matsuhisa H, Utsuno H (2008) Semi-active vibration isolation system with variable stiffness and damping control. J Sound Vib 313(1–2):16–28

    Article  Google Scholar 

  39. Lajqi S, Pehan S (2012) Designs and optimizations of active and semi-active non-linear suspension systems for a terrain vehicle. Stroj vestn J Mech Eng 58(12):732–743

    Article  Google Scholar 

  40. El Majdoub K, Ghani D, Giri F, Chaoui FZ (2015) Adaptive semi-active suspension of quarter-vehicle with magnetorheological damper. J Dyn Syst Meas Control 137(2):021010

    Article  Google Scholar 

  41. Babak Assadsangabi, Eghtesad M, Daneshmand F, Vahdati N (2009) Hybrid sliding mode control of semi-active suspension systems. Smart Mater Struct 18(12):125027

    Article  Google Scholar 

  42. Ahmadian M, Song X, Southward SC (2004) No-jerk skyhook control methods for semiactive suspensions. J Vib Acoust 126(4):580–584

    Article  Google Scholar 

  43. Aly AA, Salem FA (2013) Vehicle suspension systems control: a review. Int J Control Autom Syst 2(2):46–54

    Google Scholar 

  44. Kasemi B, Muthalif AG, Rashid MM, Fathima S (2012) Fuzzy-PID controller for semi-active vibration control using magnetorheological fluid damper. Procedia Eng 41:1221–1227

    Article  Google Scholar 

  45. Wu JD, Chen RJ (2004) Application of an active controller for reducing small-amplitude vertical vibration in a vehicle seat. J Sound Vib 274(3–5):939–951

    Article  Google Scholar 

  46. Lam AHF, Liao WH (2003) Semi-active control of automotive suspension systems with magneto-rheological dampers. Int J Veh Des 33(1–3):50–75

    Article  Google Scholar 

  47. Choi SB, Han YM (2003) MR seat suspension for vibration control of a commercial vehicle. Int J Veh Des 31(2):202–215

    Article  MathSciNet  Google Scholar 

  48. Du H, Li W, Zhang N (2011) Semi-active variable stiffness vibration control of vehicle seat suspension using an MR elastomer isolator. Smart Mater Struct 20(10):105003

    Article  Google Scholar 

  49. Kasprzyk J, Wyrwal J, Krauze P (2014) Automotive MR damper modeling for semi-active vibration control. In: 2014 IEEE/ASME international conference on advanced intelligent mechatronics (AIM). IEEE, pp 500–505

  50. Du H, Li W, Zhang N (2012) Integrated seat and suspension control for a quarter car with driver model. IEEE Trans Veh Technol 61(9):3893–3908

    Article  Google Scholar 

  51. Chen YW, Zhao Q (2012) Sliding mode variable structure control for semi-active seat suspension in vehicles. J Harbin Eng Univ 33(6):775–781

    MathSciNet  Google Scholar 

  52. Yao HJ, Fu J, Yu M, Peng YX (2013) Semi-active control of seat suspension with MR damper. In: Journal of physics: conference series, vol 412, no 1. IOP Publishing, IOP Publishing, p 012054

  53. Maciejewski I, Glowinski S, Krzyzynski T (2014) Active control of a seat suspension with the system adaptation to varying load mass. Mechatronics 24(8):1242–1253

    Article  Google Scholar 

  54. Sathishkumar P, Jancirani J, John D (2014) Reducing the seat vibration of vehicle by semi active force control technique. J Mech Sci Technol 28(2):473–479

    Article  Google Scholar 

  55. Attia EM, FZ A, El Gamal HA, El Souhily BM (2014) Effect of irregular road on dynamic response of car seat suspended by a magneto-rheological (MR) damper. Int J Appl Sci Technol 4(5):39–54

    Google Scholar 

  56. Metered H, Sika Z (2014) Vibration control of a semi-active seat suspension system using magnetorheological damper. In: 2014 IEEE/ASME 10th international conference on mechatronic and embedded systems and applications (MESA). IEEE, pp 1–7

  57. Gan Z, Hillis AJ, Darling J (2015) Adaptive control of an active seat for occupant vibration reduction. J Sound Vib 349:39–55

    Article  Google Scholar 

  58. Shin DK, Choi SB (2015) Design of a new adaptive fuzzy controller and its application to vibration control of a vehicle seat installed with an MR damper. Smart Mater Struct 24(8):085012

    Article  Google Scholar 

  59. Ghany GHMABAA (2015) Ride comfort enhancement of heavy vehicles using magnetorheological seat suspension. Int J Heavy Veh Syst 22(2):93–113

    Article  Google Scholar 

  60. Phu DX, Choi SM, Choi SB (2017) A new adaptive hybrid controller for vibration control of a vehicle seat suspension featuring MR damper. J Vib Control 23(20):3392–3413

    Article  MathSciNet  Google Scholar 

  61. Rajendiran S, Lakshmi P (2016) Simulation of PID and fuzzy logic controller for integrated seat suspension of a quarter car with driver model for different road profiles. J Mech Sci Technol 30(10):4565–4570

    Article  Google Scholar 

  62. Sun SS, Ning DH, Yang J, Du H, Zhang SW, Li WH (2016) A seat suspension with a rotary magnetorheological damper for heavy duty vehicles. Smart Mater Struct 25(10):105032

    Article  Google Scholar 

  63. Bai XX, Jiang P, Qian LJ (2016) Integrated semi-active seat suspension for both longitudinal and vertical vibration isolation. J Intell Mater Syst Struct 28(8):1036–1049

    Article  Google Scholar 

  64. Singh D, Aggarwal ML (2017) Passenger seat vibration control of a semi-active quarter car system with hybrid Fuzzy–PID approach. Int J Dyn Control 5(2):287–296

    Article  MathSciNet  Google Scholar 

  65. Alfadhli A, Darling J, Hillis AJ (2017) The control of an active seat with vehicle suspension preview information. J Vib Control. https://doi.org/10.1177/1077546317698285

    Google Scholar 

  66. Gad S, Metered H, Bassuiny A, Abdel Ghany AM (2017) Multi-objective genetic algorithm fractional-order PID controller for semi-active magneto-rheologically damped seat suspension. J Vib Control 23(8):1248–1266

    Article  MathSciNet  Google Scholar 

  67. Zhang N, Zhao Q (2017) Fuzzy sliding mode controller design for semi-active seat suspension with neuro-inverse dynamics approximation for MR damper. J Vib Eng 19(5):3488–3511

    Google Scholar 

  68. Hu G, Liu Q, Ding R, Li G (2017) Vibration control of semi-active suspension system with magneto-rheological damper based on hyperbolic tangent model. Adv Mech Eng 9(5):1687814017694581

    Article  Google Scholar 

  69. Phu DX, An JH, Choi SB (2017) A novel adaptive PID controller with application to vibration control of a semi-active vehicle seat suspension. Appl Sci 7(10):1055

    Article  Google Scholar 

  70. Metered H, Elsawaf A, Vampola T, Sika Z (2015) Vibration control of MR-damped vehicle suspension system using PID controller tuned by particle swarm optimization. SAE Int J Passeng Cars-Mech Syst 8(2015-01-0622):426–435

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Davidson Jebaseelan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramalingam, M., Patel, R., Thirumurugan, M.A. et al. Control policies used for semi-active damper for automotive seating system: a review. Int. J. Dynam. Control 7, 1135–1148 (2019). https://doi.org/10.1007/s40435-018-0460-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-018-0460-9

Keywords

Navigation