Skip to main content
Log in

Modeling earthquakes with off-fault damage using the combined finite-discrete element method

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

When a dynamic earthquake rupture propagates on a fault in the Earth’s crust, the medium around the fault is dynamically damaged due to stress concentrations around the rupture tip. Recent field observations, laboratory experiments and canonical numerical models show the coseismic off-fault damage is essential to describe the coseismic off-fault deformation, rupture dynamics, radiation and overall energy budget. However, the numerical modeling of “localized” off-fault fractures remains a challenge mainly because of computational limitations and model formulation shortcomings. We thus developed a numerical framework for modeling coseismic off-fault fracture networks using the combined finite-discrete element method (FDEM), and we applied it to simulate dynamic ruptures with coseismic off-fault damage on various fault configurations. This paper addresses the role of coseismic off-fault damage on rupture dynamics associated with a planar fault, as a base case, and with a number of first-order geometrical complexities, such as fault kink, step-over and roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Andrews DJ (1976) Rupture velocity of plane strain shear cracks. J Geophys Res 81(B32):5679–5689. https://doi.org/10.1029/JB081i032p05679

    Article  Google Scholar 

  2. Andrews DJ (1985) Dynamic plane-strain shear rupture with a slip-weakening friction law calculated by a boundary integral method. Bull Seism Soc Am 75:1–21

    Google Scholar 

  3. Andrews DJ (2005) Rupture dynamics with energy loss outside the slip zone. J Geophys Res 110:1307. https://doi.org/10.1029/2004JB003191

    Article  Google Scholar 

  4. Aochi H, Fukuyama E (2002) Three-dimensional nonplanar simulation of the 1992 landers earthquake. J Geophys Res. https://doi.org/10.1029/2000JB000061

    Article  Google Scholar 

  5. Chester FM, Evans JP, Biegel RL (1993) Internal structure and weakening mechanisms of the san andreas fault. J Geophys Res 98:771–786. https://doi.org/10.1029/92JB01866

    Article  Google Scholar 

  6. Cho SH, Ogata Y, Kaneko K (2003) Strain-rate dependency of the dynamic tensile strength of rock. Int J Rock Mech Min Sci 40(5):763–777. https://doi.org/10.1016/S1365-1609(03)00072-8

    Article  Google Scholar 

  7. De La Puente J, Ampuero JP, Käser M (2009) Dynamic rupture modeling on unstructured meshes using a discontinuous Galerkin method. J Geophys Res 114(B10):B10302. https://doi.org/10.1029/2008JB006271

    Article  Google Scholar 

  8. Dunham EM, Belanger D, Cong L, Kozdon JE (2011) Earthquake ruptures with strongly rate-weakening friction and off-fault plasticity, part 2: Nonplanar faults. Bull Seism Soc Am 101(5):2308–2322. https://doi.org/10.1785/0120100076

    Article  Google Scholar 

  9. Euser B, Rougier E, Lei Z, Knight EE, Frash LP, Carey JW, Viswanathan H, Munjiza A (2019) Simulation of fracture coalescence in granite via the combined finite-discrete element method. Rock Mech Rock Eng 52(9):3213–3227. https://doi.org/10.1007/s00603-019-01773-0

    Article  Google Scholar 

  10. Faulkner DR, Mitchell TM, Jensen E, Cembrano J (2011) Scaling of fault damage zones with displacement and the implications for fault growth processes. J Geophys Res. https://doi.org/10.1029/2010JB007788

    Article  Google Scholar 

  11. Fletcher JM, Teran OJ, Rockwell TK, Oskin ME, Hudnut KW, Mueller KJ, Spelz RM, Akciz SO, Masana E, Faneros G et al (2014) Assembly of a large earthquake from a complex fault system: Surface rupture kinematics of the 4 April 2010 El Mayor-Cucapah (Mexico) Mw 7.2 earthquake. Geosphere 10(4):797–827. https://doi.org/10.1130/GES00933.1

    Article  Google Scholar 

  12. Gao K, Rougier E, Guyer RA, Lei Z, Johnson PA (2019) Simulation of crack induced nonlinear elasticity using the combined finite-discrete element method. Ultrasonics 98:51–61. https://doi.org/10.1016/j.ultras.2019.06.003

    Article  Google Scholar 

  13. Harris RA, Archuleta RJ, Day SM (1991) Fault steps and the dynamic rupture process: 2-D numerical simulations of a spontaneously propagating shear fracture. Geophys Res Lett 18(5):893–896. https://doi.org/10.1029/91GL01061

    Article  Google Scholar 

  14. Ida Y (1972) Cohesive force across tip of a longitudinal-shear crack and griffiths specific surface-energy. J Geophys Res 77:3796–3805 JB077i020p03796

    Article  Google Scholar 

  15. Klinger Y, Okubo K, Vallage A, Champenois J, Delorme A, Rougier E, Lei Z, Knight EE, Munjiza A, Satriano C, Baize S, Langridge R, Bhat HS (2018) Earthquake damage patterns resolve complex rupture processes. Geophys Res Lett. https://doi.org/10.1029/2018GL078842

    Article  Google Scholar 

  16. Knight EE, Rougier E, Lei Z (2015) Hybrid optimization software suite (HOSS)-educational version LA-UR-15-27013. Tech. rep, Los Alamos National Laboratory

  17. Lachenbruch AH (1980) Frictional heating, fluid pressure, and the resistance to fault motion. J Geophys Res 85(B11):6097–6112. https://doi.org/10.1029/JB085iB11p06097

    Article  Google Scholar 

  18. Lei Q, Ke G (2018) Correlation between fracture network properties and stress variability in geological media. Geophys Res Lett 45(9):3994–4006. https://doi.org/10.1002/2018GL077548

    Article  Google Scholar 

  19. Lei Z, Rougier E, Knight E, Munjiza A (2014) A framework for grand scale parallelization of the combined finite discrete element method in 2d. Comput Part Mech 1(3):307–319. https://doi.org/10.1007/s40571-014-0026-3

    Article  Google Scholar 

  20. Lei Z, Rougier E, Munjiza A, Viswanathan H, Knight EE (2019) Simulation of discrete cracks driven by nearly incompressible fluid via 2d combined finite-discrete element method. Int J Numer Anal Methods Geomech 43(9):1724–1743. https://doi.org/10.1002/nag.2929

    Article  Google Scholar 

  21. Lisjak A, Grasselli G, Vietor T (2014) Continuum-discontinuum analysis of failure mechanisms around unsupported circular excavations in anisotropic clay shales. Int J Rock Mech Min Sci 65:96–115. https://doi.org/10.1016/j.ijrmms.2013.10.006

    Article  Google Scholar 

  22. Mahabadi O, Tatone B, Grasselli G (2014) Influence of microscale heterogeneity and microstructure on the tensile behavior of crystalline rocks. J Geophys Res 119(7):5324–5341. https://doi.org/10.1002/2014JB011064

    Article  Google Scholar 

  23. Mitchell TM, Faulkner DR (2009) The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: a field study from the Atacama fault system, northern Chile. J Struct Geol 31(8):802–816. https://doi.org/10.1016/j.jsg.2009.05.002

    Article  Google Scholar 

  24. Mitchell TM, Faulkner DR (2012) Towards quantifying the matrix permeability of fault damage zones in low porosity rocks. Earth Planet Sci Lett 339–340:24–31. https://doi.org/10.1016/j.epsl.2012.05.014

    Article  Google Scholar 

  25. Munjiza A, Owen D, Bicanic N (1995) A combined finite-discrete element method in transient dynamics of fracturing solids. Eng Comput 12(2):145–174. https://doi.org/10.1108/02644409510799532

    Article  MATH  Google Scholar 

  26. Munjiza A, Andrews KRF, White JK (1999) Combined single and smeared crack model in combined finite-discrete element analysis. Int J Numer Methods Eng 44(1):41–57. https://doi.org/10.1002/(SICI)1097-0207(19990110)44:1\(<\)41::AID-NME487\(>\)3.0.CO;2-A

  27. Munjiza A, Knight EE, Rougier E (2015) Large strain finite element method: a practical course. Wiley, New York

    MATH  Google Scholar 

  28. Munjiza AA (2004) The combined finite-discrete element method. Wiley, New York. https://doi.org/10.1002/0470020180

    Book  MATH  Google Scholar 

  29. Munjiza AA, Knight EE, Rougier E (2011) Computational mechanics of discontinua. Wiley, New York. https://doi.org/10.1002/9781119971160

    Book  Google Scholar 

  30. Okubo K (2018) Dynamic earthquake ruptures on multiscale fault and fracture networks. PhD thesis, Institut de Physique du Globe de Paris

  31. Okubo K, Bhat HS, Rougier E, Marty S, Schubnel A, Lei Z, Knight EE, Klinger Y (2019) Dynamics, radiation and overall energy budget of earthquake rupture with coseismic off-fault damage. J Geophys Res. https://doi.org/10.1029/2019JB017304

    Article  Google Scholar 

  32. Palmer AC, Rice JR (1973) Growth of slip surfaces in progressive failure of over-consolidated clay. Proc R Soc Lond Ser-A 332:527–548. https://doi.org/10.1098/rspa.1973.0040

    Article  MATH  Google Scholar 

  33. Passelègue FX, Schubnel A, Nielsen S, Bhat HS, Deldicque D, Madariaga R (2016) Dynamic rupture processes inferred from laboratory microearthquakes. J Geophys Res. https://doi.org/10.1002/2015JB012694

    Article  Google Scholar 

  34. Poliakov ANB, Dmowska R, Rice JR (2002) Dynamic shear rupture interactions with fault bends and off-axis secondary faulting. J Geophys Res. https://doi.org/10.1029/2001JB000572

    Article  Google Scholar 

  35. Rice JR, Sammis CG, Parsons R (2005) Off-fault secondary failure induced by a dynamic slip pulse. Bull Seism Soc Am 95(1):109–134. https://doi.org/10.1785/0120030166

    Article  Google Scholar 

  36. Rougier E, Knight EE, Munjiza A, Sussman AJ, Broome ST, Swift RP, Bradley CR (2011) The combined finite-discrete element method applied to the study of rock fracturing behavior in 3D. In: 45th US rock mechanics/geomechanics symposium, American Rock Mechanics Association

  37. Rougier E, Knight EE, Broome ST, Sussman AJ, Munjiza A (2014) Validation of a three-dimensional finite-discrete element method using experimental results of the split hopkinson pressure bar test. Int J Rock Mech Min Sci 70:101–108. https://doi.org/10.1016/j.ijrmms.2014.03.011

    Article  Google Scholar 

  38. Shipton ZK, Cowie PA (2001) Damage zone and slip-surface evolution over \(\mu \)m to km scales in high-porosity navajo sandstone, utah. J Struct Geol 23(12):1825–1844. https://doi.org/10.1016/S0191-8141(01)00035-9

    Article  Google Scholar 

  39. Sibson RH (1977) Fault rocks and fault mechanisms. J Geol Soc 133(3):191–213. https://doi.org/10.1144/gsjgs.133.3.0191

    Article  Google Scholar 

  40. Sowers JM, Unruh JR, Lettis WR, Rubin TD (1994) Relationship of the Kickapoo fault to the Johnson Valley and Homestead Valley faults, San Bernardino county, California. Bull Seism Soc Am 84(3):528–536

    Google Scholar 

  41. Templeton EL, Rice JR (2008) Off-fault plasticity and earthquake rupture dynamics: 1. Dry materials or neglect of fluid pressure changes. J Geophys Res. https://doi.org/10.1029/2007JB005529

    Article  Google Scholar 

  42. Templeton EL, Baudet A, Bhat HS, Dmowska R, Rice JR, Rosakis AJ, Rousseau CE (2009) Finite element simulations of dynamic shear rupture experiments and dynamic path selection along kinked and branched faults. J Geophys Res. https://doi.org/10.1029/2008JB006174

    Article  Google Scholar 

  43. Thomas MY, Bhat HS (2018) Dynamic evolution of off-fault medium during an earthquake: a micromechanics based model. Geophys J Int 214(2):1267–1280. https://doi.org/10.1093/gji/ggy129

    Article  Google Scholar 

  44. Viesca RC, Garagash DI (2015) Ubiquitous weakening of faults due to thermal pressurization. Nat Geosci 8(11):875–879. https://doi.org/10.1038/ngeo2554

    Article  Google Scholar 

  45. Viesca RC, Templeton EL, Rice JR (2008) Off-fault plasticity and earthquake rupture dynamics: 2. Case of saturated off-fault materials. J Geophys Res. https://doi.org/10.1029/2007JB005530

    Article  Google Scholar 

  46. Xia KW, Rosakis AJ, Kanamori H (2004) Laboratory earthquakes: the sub-rayleigh-to-supershear rupture transition. Science 303:1859–1861. https://doi.org/10.1007/s10704-006-0030-6

    Article  Google Scholar 

  47. Xu S, Ben-Zion Y, Ampuero JP (2012) Properties of inelastic yielding zones generated by in-plane dynamic ruptures–I. Model description and basic results. Geophys J Int 191(3):1325–1342. https://doi.org/10.1111/j.1365-246X.2012.05679.x

    Article  Google Scholar 

  48. Zhao Q, Lisjak A, Mahabadi O, Liu Q, Grasselli G (2014) Numerical simulation of hydraulic fracturing and associated microseismicity using finite-discrete element method. J Rock Mech Geotech Eng 6(6):574–581. https://doi.org/10.1016/j.jrmge.2014.10.003

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Los Alamos National Laboratory (LANL) Institutional Computing program for the computing resources provided for this work. This work is supported by the LANL LDRD Program (#20170004DR) and the PhD funding from Université Sorbonne Paris Cité (USPC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurama Okubo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okubo, K., Rougier, E., Lei, Z. et al. Modeling earthquakes with off-fault damage using the combined finite-discrete element method. Comp. Part. Mech. 7, 1057–1072 (2020). https://doi.org/10.1007/s40571-020-00335-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-020-00335-4

Keywords

Navigation