Skip to main content
Log in

Effectiveness of chamomile tea on glycemic control and serum lipid profile in patients with type 2 diabetes

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Aims

This study aimed at assessing the effects of chamomile tea consumption on glycemic control and serum lipid profile in patients with type 2 diabetes mellitus (T2DM).

Methods

This single-blind randomized controlled clinical trial was conducted on 64 individuals with T2DM (males and females) aged between 30 and 60 years. The intervention group (n = 32) consumed chamomile tea (3 g/150 mL hot water) three times per day immediately after meals for 8 weeks. The control group (n = 32) followed a water regimen for the same intervention period. Fasting blood samples, anthropometric measurements, and 3-day, 24-h dietary recalls were collected at the baseline and at the end of the trial. Data were analyzed by independent t test, paired t test, Pearson correlation test, and analysis of covariance.

Results

Chamomile tea significantly decreased concentration of HbA1C (p = 0.03), serum insulin levels (p < 0.001), homeostatic model assessment for insulin resistance (p < 0.001), total cholesterol (p = 0.001), triglyceride (p < 0.001), and low-density lipoprotein cholesterol (p = 0.05) compared with control group. No significant changes were shown in serum high-density lipoprotein cholesterol levels in both groups.

Conclusion

Chamomile tea has some beneficial effects on glycemic control and serum lipid profile in T2DM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. IDF (2009) Diabetes and impaired glucose tolerance. Global burden: prevalence and projections 2010 and 2030. http://www.idf.org/diabetesatlas/diabetes-and-impaired-glucose-tolerance

  2. IDF (2011) Diabetes atlas, 5th edn. 2011 International Diabetes Federation. www.idf.org/diabetesatlas/papers

  3. Nolte MS, Karam JH (2004) Pancreatic hormones and antidiabetic drugs. Basic Clin Pharmacol 9:693–715

    Google Scholar 

  4. Holman RR, Turner RC (1991) Oral agent and insulin in the treatment of NIDDM. In: Pickup J, Williams G (eds) Textbook of diabetes. Blackwell Publication, Oxford, pp 467–469

  5. Jouad H, Haloui M, Rhiouani H, Elhilaly J, Eddouks M (2001) Ethnopharmacological survey of medicinal plants used or the treatment of diabetes, cardiac and renal diseases in the North centre region of Morocco. J Ethnopharmacol 77:175–182

    Article  CAS  PubMed  Google Scholar 

  6. Li WL, Zheng HC, Bukuru J, De Kimpe N (2004) Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol 92:1–21

    Article  CAS  PubMed  Google Scholar 

  7. Franke R, Schilcher H (2005) Chamomile: industrial profiles (medicinal and aromatic plants). CRC Press, Boca Raton

    Google Scholar 

  8. McKay DL, Blumberg JB (2006) A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother Res 20:519–530

    Article  CAS  PubMed  Google Scholar 

  9. Srivastava JK, Gupta S (2007) Antiproliferative and apoptotic effects of chamomile extract in various human cancer cells. J Agric Food Chem 55:9470–9478

    Article  CAS  PubMed  Google Scholar 

  10. Wazaify M, Afifi UF, El-Khateeb M, Ajlouni K (2011) Complementary and alternative medicine use among Jordanian patients with diabetes. Complement Ther Clin Pract 17:71–75

    Article  PubMed  Google Scholar 

  11. Azzi R, Djaziri R, Lahfa F, Sekkal FZ, Benmehdi H, Belkacem N (2012) Ethnopharmacological survey of medicinal plants used in the traditional treatment of diabetes mellitus in the North Western and South Western Algeria. J Med Plants Res 6:2041–2050

    Google Scholar 

  12. Kato A, Minoshima Y, Yamamoto J, Adachi I, Watson AA, Nash RJ (2008) Protective effects of dietary chamomile tea on diabetic complications. J Agric Food Chem 56:8206–8211

    Article  CAS  PubMed  Google Scholar 

  13. Eddouks M, Lemhadri A, Zeggwagh NA, Michel JB (2005) Potent hypoglycaemic activity of the aqueous extract of Chamaemelum nobile in normal and streptozotocin-induced diabetic rats. Diabetes Res Clin Pract 67:189–195

    Article  CAS  PubMed  Google Scholar 

  14. Ramadan KS, Emam MA (2012) Biochemical evaluation of antihyperglycemic and antioxidative effects of matricaria chamomilla leave extract studied in streptozotocin-induced diabetic rats. Int J Res Manag Technol 2:298–302

    Google Scholar 

  15. Ganzera M, Schneider P, Stuppner H (2006) Inhibitory effects of the essential oil of chamomile (Matricaria recutita) and its major constituents on human cytochrome P450 enzymes. Life Sci 78:856–861

    Article  CAS  PubMed  Google Scholar 

  16. Baser KH, Demirci B, Iscan G, Hashimoto T, Demirci F, Noma Y, Asakawa Y (2006) The essential oil constituents and antimicrobial activity of Anthemis aciphylla BOISS. var. discoidea BOISS. Chem Pharm Bull 54:222–225

    Article  CAS  PubMed  Google Scholar 

  17. Panda S, Kar A (2007) Apigenin (4′,5,7-trihydroxyflavone) regulates hyperglycaemia, thyroid dysfunction and lipid peroxidation in alloxan induced diabetic mice. J Pharm Pharmacol 59:1543–1548

    Article  PubMed  Google Scholar 

  18. Cemek M, Kaga S, Simsek N, Buyukokuroglu ME, Konuk M (2008) Antihyperglycemic and antioxidative potential of Matricaria chamomilla L. in streptozotocin-induced diabetic rats. J Nat Med 62:284–293

    Article  PubMed  Google Scholar 

  19. Darvishpadok A, Azemi M, Namjoyan F, Khodayar M, Ahmadpour F, Panahi M (2012) Effect of Matricaria chamomilla L. on blood glucose and glycosylated hemoglobin in female fertile diabetic rats. Res Pharm Sci 7:19

    Google Scholar 

  20. De Lima VLAG, Melo ED, Lima DES (2004) Total phenolic content in Brazilian teas. Brazil J Food Technol 7(2):187–190

    Google Scholar 

  21. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  PubMed  Google Scholar 

  22. Ozkaya M, Cakal E, Ustun Y, Engin-Ustan Y (2010) Effect of metformin on serum visfatin levels in patients with polycystic ovary syndrome. Fertil Steril 93:880–884

    Article  PubMed  Google Scholar 

  23. Najla OA, Olfat AK, Kholoud SR, Enas ND, I Hanan SA (2012) Hypoglycemic and biochemical effects of Matricaria Chamomilla leave extract in streptozotocin-induced diabetic rats. J Health Sci 2:42–48

    Google Scholar 

  24. Weidner C, Wowro SJ, Rousseau M, Freiwald A, Kodelja V, Abdel-Aziz H, Sauer S (2013) Antidiabetic effects of chamomile flowers extract in obese mice through transcriptional stimulation of nutrient sensors of the peroxisome proliferator-activated receptor (PPAR) family. PLoS One 8:1–16

    Google Scholar 

  25. Berger J, Moller DE (2002) The mechanisms of action of PPARs. Ann Rev Med 53:409–435

    Article  CAS  PubMed  Google Scholar 

  26. Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK (2006) International Union of Pharmacology. LXI. Peroxisome proliferator activated receptors. Pharmacol Rev 58:726–741

    Article  CAS  PubMed  Google Scholar 

  27. Lehrke M, Lazar MA (2005) The many faces of PPARgamma. Cell 123:993–999

    Article  CAS  PubMed  Google Scholar 

  28. Spiegelman BM (1998) PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47:507–514

    Article  CAS  PubMed  Google Scholar 

  29. Kim J, Jobin C (2005) The flavonoid luteolin prevents lipopolysaccharide-induced NFkappaB signalling and gene expression by blocking IkappaB kinase activity in intestinal epithelial cells and bone-marrow derived dendritic cells. Immunology 115:375–387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Ding L, Daozhong J, Xiaoli C (2010) Luteolin enhances insulin sensitivity via activation of PPARγ transcriptional activity in adipocytes. J Nutr Biochem 21:941–947

    Article  CAS  PubMed  Google Scholar 

  31. Xita N, Tsatsoulis A (2012) Adiponectin in diabetes mellitus. Curr Med Chem 19:5451–5458

    Article  CAS  PubMed  Google Scholar 

  32. Lihn A, Pedersen SB, Richelsen B (2005) Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev 6:13–21

    Article  CAS  PubMed  Google Scholar 

  33. Al-Jubouri HHF, Al-Jalil BH, Farid I, Jasim F, Wehbi S (1990) The effect of chamomile on hyperlipidemias in rats. J Fac Med Baghdad 32:5–11

    Google Scholar 

  34. Mather KJ, Helmut OS, Alain D (2013) Insulin resistance in the vasculature. J Clin Invest 123:1003–1004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Zavaroni I, Dall’Aglio E, Alpi O, Bruschi F, Bonora E, Pezzarossa A, Butturini U (1985) Evidence for an independent relationship between plasma insulin and concentration of high density lipoprotein cholesterol and triglyceride. Atherosclerosis 55:259–266

    Article  CAS  PubMed  Google Scholar 

  36. Orchard TJ, Becker DJ, Bates M, Kuller LH, Drash AL (1983) Plasma insulin and lipoprotein concentrations: an atherogenic association? Am J Epidemiol 118:326–337

    CAS  PubMed  Google Scholar 

  37. Haffner SM, Fong D, Hazuda HP, Pugh JA, Patterson JK (1988) Hyperinsulinemia, upper body adiposity, and cardiovascular risk factors in non-diabetics. Metabolism 37:338–345

    Article  CAS  PubMed  Google Scholar 

  38. Kalra A, Sreekumaran N, Lavanya R (2006) Association of obesity and insulin resistance with dyslipidemia in Indian women with polycystic ovarian syndrome. Indian J Med Sci 60:11

    Google Scholar 

  39. Reaven GM, Lerner RL, Stern MP, Farquhar JW (1967) Role of insulin in endogenous hypertriglyceridemia. J Clin Invest 46:1756–1767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Laws A, Reaven GM (1992) Evidence for an independent relationship between insulin resistance and fasting plasma HDL-cholesterol, triglyceride and insulin concentrations. J Intern Med 231:25–30

    Article  CAS  PubMed  Google Scholar 

  41. Goldberg IJ (1996) Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res 37:693–707

    CAS  PubMed  Google Scholar 

  42. Fruchart JC, Staels B, Duriez P (2001) The role of fibric acids in atherosclerosis. Curr Atheroscler Rep 3:83–92

    Article  CAS  PubMed  Google Scholar 

  43. Harrington WW, Britt SC, Wilson JG, Milliken NO, Binz JG, Lobe DC, Oliver WR, Lewis MC, Oliver WR, Ignar DM (2007) The effect of PPARα, PPARδ, PPARγ, and PPARpan agonists on bodyweight, bodymass, and serum lipid profiles in diet-induced obese AKR/J mice. PPAR Res: 1–13

Download references

Acknowledgments

We thank The Research Vice-Chancellor and Nutrition Research Center of Tabriz University of Medical Sciences, Tabriz, Iran for the financial support, and patients who participated in the study. We would like to thank all of the investigators, coordinators, and patients who took part in this study.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zemestani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafraf, M., Zemestani, M. & Asghari-Jafarabadi, M. Effectiveness of chamomile tea on glycemic control and serum lipid profile in patients with type 2 diabetes. J Endocrinol Invest 38, 163–170 (2015). https://doi.org/10.1007/s40618-014-0170-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-014-0170-x

Keywords

Navigation