Skip to main content
Log in

Dynamic Contributions of Slow Wave Sleep and REM Sleep to Cognitive Longevity

  • Sleep and Aging (A Spira, Section Editor)
  • Published:
Current Sleep Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this paper was to address how sleep changes with aging, with the broader goal of informing how REM sleep and slow wave activity mechanisms interact to promote cognitive longevity.

Recent Findings

We conducted novel analyses based on the National Sleep Research Resource database. Over approximately 5 years, middle-to-older aged adults, on average, showed dramatically worse sleep fragmentation, a steady decrease in slow wave sleep, and yet a small increase in REM sleep. Averaging across participants, however, masked a major theme: Individuals differ substantially in their longitudinal trajectories for specific components of sleep. We considered this individual variability in light of recent theoretical and empirical work that has shown disrupted sleep and decreased slow wave activity to impair frontal lobe restoration, glymphatic system functioning, and memory consolidation. Based on multiple recent longitudinal studies, we contend that preserved or enhanced REM sleep may compensate for otherwise disrupted sleep in advancing age.

Summary

The scientific community has often debated whether slow wave activity or REM sleep mechanisms are more important to cognitive aging. We propose that a more fruitful approach for future work will be to investigate how REM and slow wave processes dynamically interact to affect cognitive longevity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • Jackson JH. The Croonian lectures on evolution and dissolution of the nervous system. BMJ 1884;1:703–7. He theorized about dissociable, interactive sleep-based cognitive processes one year before Ebbinghaus’ seminal work on the forgetting curve, and nearly 70 years before the discovery of sleep stages.

    Article  CAS  Google Scholar 

  2. Bubu OM, Brannick M, Mortimer J, Umasabor-Bubu O, Sebastião YV, Wen Y, et al. Sleep, cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. Sleep 2017;40:zsw032. https://doi.org/10.1093/sleep/zsw032.

  3. Global Council on Brain Health. The brain-sleep connection: GCBH recommendations on sleep and brain health. American Association of Retired Persons. 2016. https://www.aarp.org/content/dam/aarp/health/healthy-living/2017/01/gcbh-recommendations-sleep-and-brain-health-aarp.pdf. Accessed 7 Sept 2018.

  4. Miles LE, Dement WC. Sleep and aging. Sleep. 1980;3(2):1–220.

    CAS  PubMed  Google Scholar 

  5. Mander BA, Winer JR, Walker MP. Sleep and human aging. Neuron. 2017;94(1):19–36. https://doi.org/10.1016/j.neuron.2017.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Scullin MK, Bliwise DL. Sleep, cognition, and normal aging: integrating a half-century of multidisciplinary research. Perspect Psychol Sci. 2015;10(1):97–137. https://doi.org/10.1177/1745691614556680.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ohayon MM, Carskadon MA, Guilleminault C, Vitiello MV. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep. 2004;27(7):1255–74. https://doi.org/10.1093/sleep/27.7.1255.

    Article  PubMed  Google Scholar 

  8. Zhang GQ, Cui L, Mueller R, Tao S, Kim M, Rueschman M, et al. The National Sleep Research Resource: towards a sleep data commons. J Am Med Inform Assoc. 2018;25:1351–8. https://doi.org/10.1093/jamia/ocy064.

    Article  PubMed  PubMed Central  Google Scholar 

  9. • Dean DA 2nd, Goldberger AL, Mueller R, Kim M, Rueschman M, Mobley D, et al. Scaling up scientific discovery in sleep medicine: the National Sleep Research Resource. Sleep 2016;39(5):1151–64. https://doi.org/10.5665/sleep.5774. A publicly available resource for researchers to analyze polysomnography data from thousands of participants across the lifespan.

    Article  Google Scholar 

  10. Quan SF, Howard BV, Iber C, Kiley JP, Nieto FJ, O’Connor GT, et al. The Sleep Heart Health Study: design, rationale, and methods. Sleep. 1997;20(12):1077–85.

    CAS  PubMed  Google Scholar 

  11. Agnew HW, Webb WB, Williams RL. The first night effect: an EEG study of sleep. Psychophysiology. 1966;2(3):263–6.

    Article  Google Scholar 

  12. Ohayon M, Wickwire EM, Hirshkowitz M, Albert SM, Avidan A, Daly FJ, et al. National Sleep Foundation’s sleep quality recommendations: first report. Sleep Health. 2017;3(1):6–19. https://doi.org/10.1016/j.sleh.2016.11.006.

    Article  PubMed  Google Scholar 

  13. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373–7. https://doi.org/10.1126/science.1241224.

    Article  CAS  PubMed  Google Scholar 

  14. Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The glymphatic system: a beginner’s guide. Neurochem Res. 2015;40(12):2583–99. https://doi.org/10.1007/s11064-015-1581-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76(7):845–61. https://doi.org/10.1002/ana.24271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Peng W, Achariyar TM, Li B, Liao Y, Mestre H, Hitomi E, et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2016;93:215–25. https://doi.org/10.1016/j.nbd.2016.05.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mander BA, Winer JR, Jagust WJ, Walker MP. Sleep: a novel mechanistic pathway, biomarker, and treatment target in the pathology of Alzheimer’s disease? Trends Neurosci. 2016;39(8):552–66. https://doi.org/10.1016/j.tins.2016.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hwang JY, Byun MS, Choe YM, Lee JH, Yi D, Choi JW, et al. Moderating effect of APOE ε4 on the relationship between sleep-wake cycle and brain β-amyloid. Neurology. 2018;90(13):e1167–73. https://doi.org/10.1212/WNL.0000000000005193.

    Article  CAS  PubMed  Google Scholar 

  19. Musiek ES, Bhimasani M, Zangrilli MA, Morris JC, Holtzman DM, Ju YE. Circadian rest-activity pattern changes in aging and preclinical Alzheimer disease. JAMA Neurol. 2018;75(5):582–90. https://doi.org/10.1001/jamaneurol.2017.4719.

    Article  PubMed  Google Scholar 

  20. Varga AW, Wohlleber ME, Giménez S, Romero S, Alonso JF, Ducca EL, et al. Reduced slow-wave sleep is associated with high cerebrospinal fluid Aβ42 levels in cognitively normal elderly. Sleep. 2016;39(11):2041–8.

    Article  Google Scholar 

  21. Wilckens KA, Tudorascu DL, Snitz BE, Price JC, Aizenstein HJ, Lopez OL, et al. Sleep moderates the relationship between amyloid beta and memory recall. Neurobiol Aging. 2018;71:142–8. https://doi.org/10.1016/j.neurobiolaging.2018.07.011.

    Article  CAS  PubMed  Google Scholar 

  22. • Ju YE, Ooms SJ, Sutphen C, Macauley SL, Zangrilli MA, Jerome G, et al. Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels. Brain 2017;140(8):2104–11. https://doi.org/10.1093/brain/awx148. They cleverly manipulated sleep disruption via earphone-tones that responded to EEG spectral power. Though sleep disruption did not produce main effects on amyloid levels, there were dynamic changes in SWS and REM activity (in response to the disruption manipulation) that correlated with changes in amyloid levels.

    Article  Google Scholar 

  23. Lucey BP, Hicks TJ, McLeland JS, Toedebusch CD, Boyd J, Elbert DL, et al. Effect of sleep on overnight cerebrospinal fluid amyloid β kinetics. Ann Neurol. 2018;83(1):197–204. https://doi.org/10.1002/ana.25117.

    Article  CAS  PubMed  Google Scholar 

  24. Shokri-Kojori E, Wang GJ, Wiers CE, Demiral SB, Guo M, Kim SW, et al. β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci. 2018;115(17):4483–8. https://doi.org/10.1073/pnas.1721694115.

    Article  CAS  PubMed  Google Scholar 

  25. Kang JE, Cirrito JR, Dong H, Csernansky JG, Holtzman DM. Acute stress increases interstitial fluid amyloid-β via corticotropin-releasing factor and neuronal activity. Proc Natl Acad Sci. 2007;104(25):10673–8.

    Article  CAS  Google Scholar 

  26. Krause AJ, Simon EB, Mander BA, Greer SM, Saletin JM, Goldstein-Piekarski AN, et al. The sleep-deprived human brain. Nat Rev Neurosci. 2017;18(7):404–18. https://doi.org/10.1038/nrn.2017.55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scullin MK. Do older adults need sleep? A review of neuroimaging, sleep, and aging studies. Curr Sleep Med Rep. 2017;3(3):204–14. https://doi.org/10.1007/s40675-017-0086-z.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wilckens KA, Aizenstein HJ, Nofzinger EA, James JA, Hasler BP, Rosario-Rivera BL, et al. The role of non-rapid eye movement slow-wave activity in prefrontal metabolism across young and middle-aged adults. J Sleep Res. 2016;25:296–306. https://doi.org/10.1111/jsr.12365.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Van Der Werf YD, Altena E, Schoonheim MM, Sanz-Arigita EJ, Vis JC, De Rijke W, et al. Sleep benefits subsequent hippocampal functioning. Nat Neurosci. 2009;12:122–3.

    Article  Google Scholar 

  30. della Monica C, Johnsen S, Atzori G, Groeger JA, Dijk DJ. Rapid eye movement sleep, sleep continuity and slow wave sleep as predictors of cognition, mood, and subjective sleep quality in healthy men and women, aged 20–84 years. Front Psychiatry. 2018;9:255. https://doi.org/10.3389/fpsyt.2018.00255.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Haba-Rubio J, Marti-Soler H, Tobback N, Andries D, Marques-Vidal P, Waeber G, et al. Sleep characteristics and cognitive impairment in the general population: the HypnoLaus study. Neurology. 2017;88:463–9. https://doi.org/10.1212/WNL.0000000000003557.

    Article  PubMed  Google Scholar 

  32. Song Y, Blackwell T, Yaffe K, Ancoli-Israel S, Redline S, Stone KL, et al. Relationships between sleep stages and changes in cognitive function in older men: the MrOS Sleep Study. Sleep. 2015;38:411–21. https://doi.org/10.5665/sleep.4500.

    Article  PubMed  PubMed Central  Google Scholar 

  33. • Pase MP, Himali JJ, Grima NA, Beiser AS, Satizabal CL, Aparicio HJ, et al. Sleep architecture and the risk of incident dementia in the community. Neurology 2017;89:1244–50. https://doi.org/10.1212/WNL.0000000000004373. They conducted the longest longitudinal PSG and cognition study (that included a strong sample size). In so doing, they revealed that baseline REM and sleep fragmentation were predictive of faster cognitive decline.

    Article  Google Scholar 

  34. Djonlagic I, Aeschbach D, Harrison SL, Dean D, Yaffe K, Ancoli-Israel S, et al. Associations between quantitative sleep EEG and subsequent cognitive decline in older women. J Sleep Res. 2018:e12666. https://doi.org/10.1111/jsr.12666.

  35. Tranah GJ, Yaffe K, Nievergelt CM, Parimi N, Glymour MM, Ensrud KE, et al. APOEε4 and slow wave sleep in older adults. PLoS One. 2018;13(1):e0191281. https://doi.org/10.1371/journal.pone.0191281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brayet P, Petit D, Frauscher B, Gagnon JF, Gosselin N, Gagnon K, et al. Quantitative EEG of rapid-eye-movement sleep: a marker of amnestic mild cognitive impairment. Clin EEG Neurosci. 2016;47(2):134–41. https://doi.org/10.1177/1550059415603050.

    Article  PubMed  Google Scholar 

  37. • Kyle SD, Sexton CE, Feige B, Luik AI, Lane J, Saxena R, et al. Sleep and cognitive performance: cross-sectional associations in the UK Biobank. Sleep Med. 2017;38:85–91. https://doi.org/10.1016/j.sleep.2017.07.001 This study included nearly half a million participants, and their results highlighted the variability in positive, null, and negative results that are pervasive when looking across individual behavioral studies in the sleep, cognition and aging literature.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gui WJ, Li HJ, Guo YH, Peng P, Lei X, Yu J. Age-related differences in sleep-based memory consolidation: a meta-analysis. Neuropsychologia. 2017;97:46–55. https://doi.org/10.1016/j.neuropsychologia.2017.02.001.

    Article  PubMed  Google Scholar 

  39. Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci. 2010;11(2):114–26. https://doi.org/10.1038/nrn2762.

    Article  CAS  PubMed  Google Scholar 

  40. Backhaus J, Born J, Hoeckesfeld R, Fokuhl S, Hohagen F, Junghanns K. Midlife decline in declarative memory consolidation is correlated with a decline in slow wave sleep. Learn Mem. 2007;14(5):336–41.

    Article  Google Scholar 

  41. Jones BJ, Mackay A, Mantua J, Schultz KS, Spencer RM. The role of sleep in emotional memory processing in middle age. Neurobiol Learn Mem. 2018;155:208–15. https://doi.org/10.1016/j.nlm.2018.08.002.

    Article  PubMed  Google Scholar 

  42. Alger SE, Kensinger EA, Payne JD. Preferential consolidation of emotionally salient information during a nap is preserved in middle age. Neurobiol Aging. 2018;68:34–47. https://doi.org/10.1016/j.neurobiolaging.2018.03.030.

    Article  PubMed  Google Scholar 

  43. Spencer RM, Gouw AM, Ivry RB. Age-related decline of sleep-dependent consolidation. Learn Mem. 2007;14(7):480–4.

    Article  Google Scholar 

  44. Wilson JK, Baran B, Pace-Schott EF, Ivry RB, Spencer RM. Sleep modulates word-pair learning but not motor sequence learning in healthy older adults. Neurobiol Aging. 2012;33(5):991–1000. https://doi.org/10.1016/j.neurobiolaging.2011.06.029.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mander BA, Rao V, Lu B, Saletin JM, Lindquist JR, Ancoli-Israel S, et al. Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging. Nat Neurosci. 2013;16(3):357–64.

    Article  CAS  Google Scholar 

  46. Scullin MK. Sleep, memory, and aging: the link between slow-wave sleep and episodic memory changes from younger to older adults. Psychol Aging. 2013;28(1):105–14. https://doi.org/10.1037/a0028830.

    Article  PubMed  Google Scholar 

  47. Scullin MK, Fairley J, Decker M, Bliwise DL. The effects of an afternoon nap on episodic memory in young and older adults. Sleep. 2017;40:zsx035. https://doi.org/10.1093/sleep/zsx035.

    Article  PubMed Central  Google Scholar 

  48. Cordi MJ, Schreiner T, Rasch B. No effect of vocabulary reactivation in older adults. Neuropsychologia. 2018;119:253–61. https://doi.org/10.1016/j.neuropsychologia.2018.08.021.

    Article  PubMed  Google Scholar 

  49. Debarnot U, Rossi M, Faraguna U, Schwartz S, Sebastiani L. Sleep does not facilitate insight in older adults. Neurobiol Learn Mem. 2017;140:106–13. https://doi.org/10.1016/j.nlm.2017.02.005.

    Article  PubMed  Google Scholar 

  50. Fogel SM, Albouy G, Vien C, Popovicci R, King BR, Hoge R, et al. fMRI and sleep correlates of the age-related impairment in motor memory consolidation. Hum Brain Mapp. 2014;35(8):3625–45. https://doi.org/10.1002/hbm.22426.

    Article  PubMed  Google Scholar 

  51. Fleischman DA, Wilson RS, Gabrieli JD, Bienias JL, Bennett DA. A longitudinal study of implicit and explicit memory in old persons. Psychol Aging. 2004;19(4):617–25.

    Article  Google Scholar 

  52. Ackermann S, Hartmann F, Papassotiropoulos A, de Quervain DJ, Rasch B. No associations between interindividual differences in sleep parameters and episodic memory consolidation. Sleep. 2015;38(6):951–9. https://doi.org/10.5665/sleep.4748.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Latchoumane CV, Ngo HVV, Born J, Shin HS. Thalamic spindles promote memory formation during sleep through triple phase-locking of cortical, thalamic, and hippocampal rhythms. Neuron 2017;95(2):424–35.e6. https://doi.org/10.1016/j.neuron.2017.06.025.

    Article  Google Scholar 

  54. Staresina BP, Bergmann TO, Bonnefond M, van der Meij R, Jensen O, Deuker L, et al. Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nat Neurosci. 2015;18(11):1679–86.

    Article  CAS  Google Scholar 

  55. Helfrich RF, Mander BA, Jagust WJ, Knight RT, Walker MP. Old brains come uncoupled in sleep: slow wave-spindle synchrony, brain atrophy, and forgetting. Neuron. 2018;97(1):221–30. https://doi.org/10.1016/j.neuron.2017.11.020.

    Article  CAS  PubMed  Google Scholar 

  56. Fogel S, Vien C, Karni A, Benali H, Carrier J, Doyon J. Sleep spindles: a physiological marker of age-related changes in gray matter in brain regions supporting motor skill memory consolidation. Neurobiol Aging. 2017;49:154–64. https://doi.org/10.1016/j.neurobiolaging.2016.10.009.

    Article  PubMed  Google Scholar 

  57. • Hornung OP, Regen F, Danker-Hopfe H, Schredl M, Heuser I. The relationship between REM sleep and memory consolidation in old age and effects of cholinergic medication. Biol Psychiatry 2007;61(6):750–7. Perhaps the largest intervention study for memory consolidation in older adults. They discovered that cholinesterase inhibitors improved memory consolidation, with the improvements potentially explained by augmenting both REM sleep and SWA (see ref 77).

    Article  CAS  Google Scholar 

  58. Wilckens KA, Ferrarelli F, Walker MP, Buysse DJ. Slow-wave activity enhancement to improve cognition. Trends Neurosci. 2018;41(7):470–82. https://doi.org/10.1016/j.tins.2018.03.003.

    Article  CAS  PubMed  Google Scholar 

  59. Ladenbauer J, Külzow N, Passmann S, Antonenko D, Grittner U, Tamm S, et al. Brain stimulation during an afternoon nap boosts slow oscillatory activity and memory consolidation in older adults. Neuroimage. 2016;142:311–23. https://doi.org/10.1016/j.neuroimage.2016.06.057.

    Article  PubMed  Google Scholar 

  60. Ladenbauer J, Ladenbauer J, Külzow N, de Boor R, Avramova E, Grittner U, et al. Promoting sleep oscillations and their functional coupling by transcranial stimulation enhances memory consolidation in mild cognitive impairment. J Neurosci. 2017;37:7111–24. https://doi.org/10.1523/JNEUROSCI.0260-17.2017.

    Article  CAS  PubMed  Google Scholar 

  61. Westerberg CE, Florczak SM, Weintraub S, Mesulam MM, Marshall L, Zee PC, et al. Memory improvement via slow-oscillatory stimulation during sleep in older adults. Neurobiol Aging. 2015;36(9):2577–86. https://doi.org/10.1016/j.neurobiolaging.2015.05.014.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Papalambros NA, Santostasi G, Malkani RG, Braun R, Weintraub S, Paller KA, et al. Acoustic enhancement of sleep slow oscillations and concomitant memory improvement in older adults. Front Hum Neurosci. 2017;11:109. https://doi.org/10.3389/fnhum.2017.00109.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Eggert T, Dorn H, Sauter C, Nitsche MA, Bajbouj M, Danker-Hopfe H. No effects of slow oscillatory transcranial direct current stimulation (tDCS) on sleep-dependent memory consolidation in healthy elderly subjects. Brain Stimulation. 2013;6(6):938–45. https://doi.org/10.1016/j.brs.2013.05.006.

    Article  PubMed  Google Scholar 

  64. Paßmann S, Külzow N, Ladenbauer J, Antonenko D, Grittner U, Tamm S, et al. Boosting slow oscillatory activity using tDCS during early nocturnal slow wave sleep does not improve memory consolidation in healthy older adults. Brain Stimulation. 2016;9(5):730–9. https://doi.org/10.1016/j.brs.2016.04.016.

    Article  PubMed  Google Scholar 

  65. Manenti R, Sandrini M, Gobbi E, Cobelli C, Brambilla M, Binetti G, et al. Strengthening of existing episodic memories through non-invasive stimulation of prefrontal cortex in older adults with subjective memory complaints. Front Aging Neurosci. 2017;9:401. https://doi.org/10.3389/fnagi.2017.00401.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lafon B, Henin S, Huang Y, Friedman D, Melloni L, Thesen T, et al. Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings. Nat Commun. 2017;8(1):1199. https://doi.org/10.1038/s41467-017-01045-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bliwise DL. Sleep in normal aging and dementia. Sleep. 1993;16:40–81.

    Article  CAS  Google Scholar 

  68. Lyamin OI, Kosenko PO, Korneva SM, Vyssotski AL, Mukhametov LM, Siegel JM. Fur seals suppress REM sleep for very long periods without subsequent rebound. Curr Biol. 2018;28(12):2000–5. https://doi.org/10.1016/j.cub.2018.05.022.

    Article  CAS  PubMed  Google Scholar 

  69. Symonds JA. Sleep and dreams, two lectures. London: Murray; 1851.

    Google Scholar 

  70. Ebbinghaus H. Ueber das Gedächtnis. Leipzig: Drucker & Humblat; 1885.

    Google Scholar 

  71. Aserinsky E, Kleitman N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science. 1953;118(3062):273–4.

    Article  CAS  Google Scholar 

  72. Giuditta A, Ambrosini MV, Montagnese P, Mandile P, Cotugno M, Zucconi GG, et al. The sequential hypothesis of the function of sleep. Beh Brain Res. 1995;69:157–66.

    Article  CAS  Google Scholar 

  73. Giuditta A. Sleep memory processing: the sequential hypothesis. Front Syst Neurosci. 2014;16:219. https://doi.org/10.3389/fnsys.2014.00219.

    Article  Google Scholar 

  74. Llewellyn S, Hobson JA. Not only… but also: REM sleep creates and NREM stage 2 instantiates landmark junctions in cortical memory networks. Neurobiol Learn Mem. 2015;122:69–87. https://doi.org/10.1016/j.nlm.2015.04.005.

    Article  PubMed  Google Scholar 

  75. Gelber RP, Redline S, Ross GW, Petrovitch H, Sonnen JA, Zarow C, et al. Associations of brain lesions at autopsy with polysomnography features before death. Neurology. 2015;84:296–303. https://doi.org/10.1212/WNL.0000000000001163.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hornung OP, Regen F, Dorn H, Anghelescu I, Kathmann N, Schredl M, et al. The effects of donepezil on postlearning sleep EEG of healthy older adults. Pharmacopsychiatry. 2009;42(01):9–13.

    Article  CAS  Google Scholar 

  77. Kaiser J. The Alzheimer’s gamble: can the National Institute on Aging turn a funding windfall into a treatment for the dreaded brain disease? Science. 2018;361:839–41.

    Google Scholar 

  78. Horne J. Sleeplessness: assessing sleep need in society today. Leicestershire: Palgrave Macmillan; 2016.

    Book  Google Scholar 

Download references

Acknowledgments

The authors are appreciative to Yo-El Ju for helpful discussions on glymphatic functioning during the preparation of this manuscript.

Funding

This work was supported in part by NIH AG053161 (M.K.S.). The National Sleep Research Resource is supported by NIH HL114473.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Scullin.

Ethics declarations

Conflict of Interest

Michael K. Scullin reports a grant for research on memory and aging by NIH AG053161.

Chenlu Gao declares no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Sleep and Aging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scullin, M.K., Gao, C. Dynamic Contributions of Slow Wave Sleep and REM Sleep to Cognitive Longevity. Curr Sleep Medicine Rep 4, 284–293 (2018). https://doi.org/10.1007/s40675-018-0131-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40675-018-0131-6

Keywords

Navigation