Skip to main content
Log in

Pre-bent Flow-Field Plates for Enhanced Performance in Flexible Polymer Electrolyte Membrane Fuel Cells in Curved Shape

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

This article reports on a flexible polymer electrolyte membrane fuel cell (PEMFC) with a pre-bent flow field. The performances in the flat and bent positions were lower and higher, respectively than that of the traditional flexible fuel cells. The low performance in the flat position was attributed to the void space induced incomplete contact at the interface of the membrane electrode assembly (MEA) and flow-field plates, which resulted in poor performance due to the high ohmic resistance (5.85 Ω cm2) and faradaic resistance (4.17 Ω cm2). However, when bending stress was applied to the MEA, a decreased ohmic resistance (0.954 Ω cm2), faradaic resistance (0.737 Ω cm2), and an enhanced power density (88.7 mW/cm2) were observed because of the improved interfacial contact property between the MEA and the flow-field plates from the increased compressive stress. These experimental results were further analyzed and visualized with aid of the finite element analysis. Despite the relatively low performance in the flat shape, the proposed pre-bent design of the flexible PEMFC possesses promising applicability especially in flexible electronics where the curved shapes are highly required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee, J., Yim, C., Lee, D. W., & Park, S. S. (2017). Manufacturing and characterization of physically modified aluminum anodes based air battery with electrolyte circulation. International Journal of Precision Engineering and Manufacturing Green Technology. https://doi.org/10.1007/s40684-017-0007-0.

    Article  Google Scholar 

  2. Shin, D. Y., Yoo, S. S., & Seo, J. Y. (2015). Uncertainty analysis in contact resistivity measurements of crystalline silicon solar cells. International Journal of Precision Engineering and Manufacturing Green Technology. https://doi.org/10.1007/s40684-015-0028-5.

    Article  Google Scholar 

  3. Petri, R., Giebel, T., Zhang, B., Schünemann, J. H., & Herrmann, C. (2016). Material cost model for innovative li-ion battery cells in electric vehicle applications. International Journal of Precision Engineering and Manufacturing Green Technology. https://doi.org/10.1007/s40684-015-0031-x.

    Article  Google Scholar 

  4. Ahn, D. G. (2016). Direct metal additive manufacturing processes and their sustainable applications for green technology: A review. International Journal of Precision Engineering and Manufacturing Green Technology. https://doi.org/10.1007/s40684-016-0048-9.

    Article  Google Scholar 

  5. Lee, H. (2017). Environmental impact of concentration of slurry components in thick copper CMP. International Journal of Precision Engineering and Manufacturing Green Technology. https://doi.org/10.1007/s40684-017-0002-5.

    Article  Google Scholar 

  6. Saravanakumar, B., Mohan, R., Thiyagarajan, K., & Kim, S. J. (2013). Fabrication of a ZnO nanogenerator for eco-friendly biomechanical energy harvesting. RSC Advances. https://doi.org/10.1039/c3ra40447a.

    Article  Google Scholar 

  7. Pu, N. W., Shi, G. N., Liu, Y. M., Sun, X., Chang, J. K., Sun, C. L., et al. (2015). Graphene grown on stainless steel as a high-performance and ecofriendly anti-corrosion coating for polymer electrolyte membrane fuel cell bipolar plates. Journal Power Sources. https://doi.org/10.1016/j.jpowsour.2015.02.055.

    Article  Google Scholar 

  8. Truong, V. M., Yang, M. K., & Yang, H. (2019). Functionalized carbon black supported silver (Ag/C) catalysts in cathode electrode for alkaline anion exchange membrane fuel cells. International Journal of Precision Engineering and Manufacturing Green Technology. https://doi.org/10.1007/s40684-019-00123-3.

    Article  Google Scholar 

  9. Ji, S., Ha, J., Park, T., Kim, Y., Koo, B., Kim, Y. B., et al. (2016). Substrate-dependent growth of nanothin film solid oxide fuel cells toward cost-effective nanostructuring. International Journal of Precision Engineering and Manufacturing Green Technology. https://doi.org/10.1007/s40684-016-0005-7.

    Article  Google Scholar 

  10. Shin, D. H., Yoo, S. R., & Lee, Y. H. (2019). Real time water contents measurement based on step response for PEM fuel cell. International Journal of Precision Engineering and Manufacturing Green Technology. https://doi.org/10.1007/s40684-019-00099-0.

    Article  Google Scholar 

  11. Shim, J. H., Han, G. D., Choi, H. J., Kim, Y., Xu, S., An, J., et al. (2019). Atomic layer deposition for surface engineering of solid oxide fuel cell electrodes. International Journal of Precision Engineering and Manufacturing Green Technology. https://doi.org/10.1007/s40684-019-00092-7.

    Article  Google Scholar 

  12. Ma, J., & Sahai, Y. (2013). Chitosan biopolymer for fuel cell applications. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2012.10.015.

    Article  Google Scholar 

  13. Ning, F., He, X., Shen, Y., Jin, H., Li, Q., Li, D., et al. (2017). Flexible and lightweight fuel cell with high specific power density. ACS Nano. https://doi.org/10.1021/acsnano.7b01880.

    Article  Google Scholar 

  14. Harel, F., François, X., Candusso, D., Péra, M. C., Hissel, D., & Kauffmann, J. M. (2007). PEMFC durability test under specific dynamic current solicitation linked to a vehicle road cycle. Fuel Cells. https://doi.org/10.1002/fuce.200500255.

    Article  Google Scholar 

  15. Fathabadi, H. (2019). Combining a proton exchange membrane fuel cell (PEMFC) stack with a Li-ion battery to supply the power needs of a hybrid electric vehicle. Renewable Energy. https://doi.org/10.1016/j.renene.2018.06.104.

    Article  Google Scholar 

  16. Sadasivuni, K. K., Deshmukh, K., Ahipa, T. N., Muzaffar, A., Ahamed, M. B., Pasha, S. K. K., et al. (2019). Flexible, biodegradable and recyclable solar cells: a review. Journal of Materials Science: Materials in Electronics. https://doi.org/10.1007/s10854-018-0397-y.

    Article  Google Scholar 

  17. Yoon, J., Sung, H., Lee, G., Cho, W., Ahn, N., Jung, H. S., et al. (2017). Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: Towards future foldable power sources. Energy Environment Science. https://doi.org/10.1039/c6ee02650h.

    Article  Google Scholar 

  18. Voggu, V. R., Sham, J., Pfeffer, S., Pate, J., Fillip, L., Harvey, T. B., et al. (2017). Flexible CuInSe2 nanocrystal solar cells on paper. ACS Energy Letter. https://doi.org/10.1021/acsenergylett.7b00001.

    Article  Google Scholar 

  19. Roldán-Carmona, C., Malinkiewicz, O., Soriano, A., Mínguez Espallargas, G., Garcia, A., Reinecke, P., et al. (2014). Flexible high efficiency perovskite solar cells. Energy Environment Science. https://doi.org/10.1039/c3ee43619e.

    Article  Google Scholar 

  20. Park, S., Vosguerichian, M., & Bao, Z. (2013). A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale. https://doi.org/10.1039/c3nr33560g.

    Article  Google Scholar 

  21. Wang, K., Zhang, J., Wang, C., Aminirad, R., Fu, Y., Chen, P., et al. (2011). Fully printed separated carbon nanotube thin film transistor circuits and its application in organic light emitting diode control. Nano Letter. https://doi.org/10.1021/nl202765b.

    Article  Google Scholar 

  22. Engel, M., Small, J. P., Steiner, M., Freitag, M., Green, A. A., & Hersam, M. C. (2008). Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano. https://doi.org/10.1021/nn800708w.

    Article  Google Scholar 

  23. Wang, C., Chien, J. C., Takei, K., Takahashi, T., Nah, J., & Niknejad, A. M. (2012). Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. Nano Letter. https://doi.org/10.1021/nl2043375.

    Article  Google Scholar 

  24. Hu, L., Wu, H., La Mantia, F., Yang, Y., & Cui, Y. (2010). Thin, flexible secondary Li-ion paper batteries. ACS Nano. https://doi.org/10.1021/nn1018158.

    Article  Google Scholar 

  25. Tominaka, S., Nishizeko, H., Mizuno, J., & Osaka, T. (2009). Bendable fuel cells: On-chip fuel cell on a flexible polymer substrate. Energy Environment Science. https://doi.org/10.1039/B915389F.

    Article  Google Scholar 

  26. Weinmueller, C., Tautschnig, G., Hotz, N., & Poulikakos, D. (2010). A flexible direct methanol micro-fuel cell based on a metalized, photosensitive polymer film. Journal Power Sources. https://doi.org/10.1016/j.jpowsour.2009.12.092.

    Article  Google Scholar 

  27. Chang, I., Park, T., Lee, J., Lee, M. H., Ko, S. H., & Cha, S. W. (2013). Bendable polymer electrolyte fuel cell using highly flexible Ag nanowire percolation network current collectors. Journal of Materials Chemistry A. https://doi.org/10.1039/c3ta11699a.

    Article  Google Scholar 

  28. Chang, I., Park, T., Lee, J., Lee, H. B., Ji, S., & Lee, M. H. (2014). Performance enhancement in bendable fuel cell using highly conductive Ag nanowires. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2014.03.017.

    Article  Google Scholar 

  29. Park, T., Chang, I., Lee, J., Ko, S. H., & Cha, S. W. (2014). Performance variation of flexible polymer electrolyte fuel cell with Ag nanowire current collector under torsion. ECS Transactions. https://doi.org/10.1149/06403.0927ecst.

    Article  Google Scholar 

  30. Park, T., Chang, I., Jung, J. H., Lee, H. B., Ko, S. H., & O’Hayre, R. (2017). Effect of assembly pressure on the performance of a bendable polymer electrolyte fuel cell based on a silver nanowire current collector. Energy. https://doi.org/10.1016/j.energy.2017.05.197.

    Article  Google Scholar 

  31. Kang, Y. S., Park, T., Jang, S., Choi, M., Yoo, S. J., & Cha, S. W. (2016). Repetitive bending test of membrane electrode assembly for bendable polymer electrolyte membrane fuel cell. Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/j.jiec.2016.11.048.

    Article  Google Scholar 

  32. Kang, Y. S., Won, P., Ko, S. H., Park, T., & Yoo, S. J. (2019). Bending-durable membrane-electrode assembly using metal nanowires for bendable polymer electrolyte membrane fuel cell. Energy. https://doi.org/10.1016/j.energy.2019.01.123.

    Article  Google Scholar 

  33. O’Hayre, R., Cha, S. W., Colella, W., & Prinz, F. (2016). Fuel cell fundamentals. Hoboken: Wiley.

    Book  Google Scholar 

  34. Lai, X., Liu, D., Peng, L., & Ni, J. (2008). A mechanical-electrical finite element method model for predicting contact resistance between bipolar plate and gas diffusion layer in PEM fuel cells. Journal Power Sources. https://doi.org/10.1016/j.jpowsour.2008.03.069.

    Article  Google Scholar 

  35. Asghari, S., Mokmeli, A., & Samavati, M. (2010). Study of PEM fuel cell performance by electrochemical impedance spectroscopy. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2010.03.069.

    Article  Google Scholar 

  36. Hosmane, S., Fournier, A., Wright, R., Rajbhandari, L., Siddique, R., & Yang, I. H. (2011). Valve-based microfluidic compression platform: Single axon injury and regrowth. Lab on a Chip. https://doi.org/10.1039/c1lc20549h.

    Article  Google Scholar 

  37. Lee, S. J., Chan, J. C. Y., Maung, K. J., Rezler, E., & Sundararajan, N. (2007). Characterization of laterally deformable elastomer membranes for microfluidics. Journal Micromechanics Microengineering. https://doi.org/10.1088/0960-1317/17/5/001.

    Article  Google Scholar 

  38. Zhou, P., Wu, C. W., & Ma, G. J. (2007). Influence of clamping force on the performance of PEMFCs. Journal Power Sources. https://doi.org/10.1016/j.jpowsour.2006.09.068.

    Article  Google Scholar 

  39. Roshandel, R., Farhanieh, B., & Saievar-Iranizad, E. (2005). The effects of porosity distribution variation on PEM fuel cell performance. Renewable Energy. https://doi.org/10.1016/j.renene.2004.11.017.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by an NRF Grant funded by the Ministry of Science and ICT (2020R1C1C1009191). This research was also supported by the research fund of Hanbat National University in 2020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Segeun Jang or Taehyun Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, H., Kim, J., Kwon, O. et al. Pre-bent Flow-Field Plates for Enhanced Performance in Flexible Polymer Electrolyte Membrane Fuel Cells in Curved Shape. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 869–878 (2021). https://doi.org/10.1007/s40684-020-00305-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00305-4

Keywords

Navigation