Skip to main content

Advertisement

Log in

Changes in Organ Physiology in the Aging Adult

  • Geriatric Trauma (F Luchette, Section Editor)
  • Published:
Current Trauma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Recent advances in geriatric medicine and the aging of organ physiology affect the available clinical understanding and treatments for geriatric trauma patients.

Recent Findings

The effects of aging on organ physiology are complex and interlinked. There are global cellular changes and molecular and cellular changes specific to individual organ systems that affect the host response to trauma in the elderly.

Summary

As a n improved understanding of the physiologic changes of aging at the organ level allows application to a variety of clinical scenarios; we have better understanding of the host response to trauma at an older age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. The Department of Health and Human Services, Administration on Aging. Projected future growth of the older population. http://www.aoa.gov/aoaroot/aging_statistics/future_growth/future_growth.aspx#age. Accessed July 20, 2016.

  2. Caterino JM, Valasek T, Werman HA. Identification of an age cutoff for increased mortality in patients with elderly trauma. Am J Emerg Med. 2010;28:151–8.

    Article  PubMed  Google Scholar 

  3. Holliday R. Aging is no longer an unsolved problem in biology. Ann N Y Acad Sci. 2006;1067:1–9.

    Article  PubMed  Google Scholar 

  4. ••Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature. 2007;447:725–9. This paper discusses the DNA repair mechanisms with aging in the hematopoietic system.

    Article  CAS  PubMed  Google Scholar 

  5. Mather KA, Jorm AF, Parslow RA, Christensen H. Is telomere length a biomarker of aging? A review. J Gerontol A Biol Sci Med Sci. 2011;66(2):202–13.

    Article  PubMed  Google Scholar 

  6. Ishikawa N, Nakamura K, Izumiyama-Shimomura N, Aida J, Matsuda Y, Arai T, et al. Changes of telomere status with aging: an update. Gerontol Int. 2016;16 Suppl 1:30–42.

    Article  Google Scholar 

  7. ••Townsley DM, Dumitriu B, Liu D, Biancotto A, Weinstein B, Chen C, et al. Danazol treatment for telomere diseases. N Engl J Med. 2016;374:1922–31. This paper highlights the importance of danazol as a potential treatment for disease associated with aging.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shalev I, Belsky J. Early-life stress and reproductive cost: a two -hit developmental model of accelerated aging? Med Hypotheses. 2016;90:41–7.

    Article  PubMed  Google Scholar 

  9. •Rundberg Nilsson A, Soneji S, Adolfsson S, Bryder D, Pronk CJ. Human and murine hematopoietic stem cell aging is associated with functional impairments and intrinsic megakaryocytic/erythroid bias. PLoS One. 2016;11(7):e0158369. This paper describes changes in balance in downstream erythroid potentiation with aging.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A. 2005;102:9194–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gruver AL, Hudson LL, Sempowski GD. Immunosenescence of aging. J Pathol. 2007;211:144–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Prince M et al. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 2013;9(1):63–75.

    Article  PubMed  Google Scholar 

  13. Foster CM, Picklesimer ME, Mulligan NW, Giovanello KS. The effect of age on relational encoding as revealed by hippocampal functional connectivity. Neurobiol Learn Mem. 2016;134 Pt A:5–14.

    Article  PubMed  Google Scholar 

  14. Filippini F, Hayek T, Aviram M, Keidar S, Rodella LF, Coleman R, et al. Apolipoprotein E and its role in aging and survival. Exp Gerontol. 2010;45(2):149–57.

    Article  PubMed  Google Scholar 

  15. Neuner SM, Garfinkel BP, Wilmott LA, Ignatowska-Jankowska BM, Citri A, Orly J, et al. Systems genetics identifies Hp1bp3 as a novel modulator of cognitive aging. Neurobiol Aging. 2016;46:58–67.

    Article  CAS  PubMed  Google Scholar 

  16. •Jackson PA, Pialoux V, Corbett D, Drogos L, Erickson KI, Eskes GA, et al. Promoting brain health through exercise and diet in older adults: a physiological perspective. J Physiol. 2016;594(16):4485–98. This paper describes preventative measures to belay the effects of aging on the brain.

    Article  CAS  PubMed  Google Scholar 

  17. Tyndall AV, Davenport MH, Wilson BJ, Burek GM, Arsenault-Lapierre G, Haley E, et al. The brain-in-motion study: effect of a 6-month aerobic exercise intervention on cerebrovascular regulation and cognitive function in older adults. BMC Geriatr. 2013;13:21.

    Article  PubMed  PubMed Central  Google Scholar 

  18. McGuinness B, Todd S, Passmore P, Bullock R. Blood pressure lowering in patients without prior cerebrovascular disease for prevention of cognitive impairment and dementia. Cochrane Database Syst Rev. 2009;4:CD004034.

    Google Scholar 

  19. Koga S, Dickson DW, Bieniek KF. Chronic traumatic encephalopathy pathology in multiple system atrophy. J Neuropathol Exp Neurol. 2016;75:963–70.

    Article  PubMed  Google Scholar 

  20. Zalewski CK. Aging of the human vestibular system. Semin Hear. 2015;36(3):175–96.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Baloh RW, Honrubia V, Jacobson K. Benign positional vertigo: clinical and oculographic features in 240 cases. Neurology. 1987;37(3):371–8.

    Article  CAS  PubMed  Google Scholar 

  22. Parnes LS, McClure JA. Free-floating endolymph particles: a new operative finding during posterior semicircular canal occlusion. Laryngoscope. 1992;102(9):988–92.

    Article  CAS  PubMed  Google Scholar 

  23. Rauch SD, Velazquez-Villaseñor L, Dimitri PS, Merchant SN. Decreasing hair cell counts in aging humans. Ann N Y Acad Sci. 2001;942:220–7.

    Article  CAS  PubMed  Google Scholar 

  24. Iwasaki S, Smulders YE, Burgess AM, McGarvie LA, Macdougall HG, Halmagyi GM, et al. Ocular vestibular evoked myogenic potentials to bone conducted vibration of the midline forehead at Fz in healthy subjects. Clin Neurophysiol. 2008;119(9):2135–47.

    Article  CAS  PubMed  Google Scholar 

  25. Agrawal Y, Zuniga MG, Davalos-Bichara M, Schubert MC, Walston JD, Hughes J, et al. Decline in semicircular canal and otolith function with age. Otol Neurotol. 2012;33(5):832–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mattace-Raso FU, van den Meiracker AH, Bos WJ, van der Cammen TJ, Westerhof BE, Elias-Smale S, et al. Arterial stiffness, cardiovagal baroreflex sensitivity and postural blood pressure changes in older adults: the Rotterdam Study. J Hypertens. 2007;25:1421–6.

    Article  CAS  PubMed  Google Scholar 

  27. Swierblewska E, Hering D, Kara T, Kunicka K, Kruszewski P, Bieniaszewski L, et al. An independent relationship between muscle sympathetic nerve activity and pulse wave velocity in normal humans. J Hypertens. 2010;28:979–84.

    Article  CAS  PubMed  Google Scholar 

  28. Lind L, Berglund L, Larsson A, Sundström J. Endothelial function in resistance and conduit arteries and 5-year risk of cardiovascular disease. Circulation. 2011;123:1545–51.

    Article  PubMed  Google Scholar 

  29. •Parikh JD, Hollingsworth KG, Wallace D, Blamire AM, MacGowan GA. Normal age-related changes in left ventricular function: role of afterload and subendocardial dysfunction. Int J Cardiol. 2016;223:306–12. This paper describes subendocardial dysfunction and changes in cardiac output in aging adults.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Forman DE, Alexander KP. Frailty: a vital sign for older adults with cardiovascular disease. Can J Cardiol. 2016; (16)30127-1.

  31. Anton SD, Woods AJ, Ashizawac T, et al. Successful aging: advancing the science of physical independence in older adults. Ageing Res Rev. 2015;24(9):304–27.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dawson A, Dennison E. Measuring the musculoskeletal aging phenotype. Maturitas 2016.

  33. Goodman CA, Hornberger TA, Robling AG. Bone and skeletal muscle: key players in mechanotransduction and potential overlapping mechanisms. Bone. 2015;80:24–36.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Budui SL, Rossi AP, Zamboni M. The pathogenetic bases of sarcopenia. Clin Cases Miner Bone Metab. 2015;12(91):22–6.

    PubMed  PubMed Central  Google Scholar 

  35. Reilly BD, Franklin CE. Prevention of muscle wasting and osteoporosis: the value of examining novel animal models. J Exp Biol. 2016;219:2582–95.

    Article  PubMed  Google Scholar 

  36. Talbert EE, Smuder AJ, Min K, Kwon OS, Szeto HH, Powers SK. Immobilization-induced activation of key proteolytic systems in skeletal muscles is prevented by a mitochondria-targeted antioxidant. J Appl Physiol. 2013;115:529–38.

    Article  CAS  PubMed  Google Scholar 

  37. O’Connor RS, Pavlath GK, McCarthy JJ, Esser KA. Last word on point: counterpoint: satellite cell addition is/is not obligatory for skeletal muscle hypertrophy. J Appl Physiol. 2007;103:1107.

    Article  PubMed  Google Scholar 

  38. ••Bruusgaard JC, Johansen IB, Egner IM, Rana ZA, Gundersen K. Myonuclei acquired by overload exercise precede hypertrophy and are not lost on detraining. Proc Natl Acad Sci U S A. 2010;107:15111–6. This paper describes a new paradigm for our understanding of muscle hypertrophy and atrophy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gundersen K. Muscle memory and a new cellular model for muscle atrophy and hypertrophy. J Exp Biol. 2016;219:235–42.

    Article  PubMed  Google Scholar 

  40. Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol. 2005;37:1974–84.

    Article  CAS  PubMed  Google Scholar 

  41. Cohen S, Nathan JA, Goldberg AL. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov. 2015;14(1):58–74.

    Article  CAS  PubMed  Google Scholar 

  42. Levine S et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358:1327–35.

    Article  CAS  PubMed  Google Scholar 

  43. Helliwell TR et al. Muscle fibre atrophy in critically ill patients is associated with the loss of myosin filaments and the presence of lysosomal enzymes and ubiquitin. Neuropathol Appl Neurobiol. 1998;24:507–17.

    Article  CAS  PubMed  Google Scholar 

  44. •Sheetz KH, Waits SA, Terjimanian MN, et al. Cost of major surgery in the sarcopenic patient. J Am Coll Surg. 2013;217(5):813–8. This paper describes the clinical effects of sarcopenia on patients requiring surgery in old age.

    Article  PubMed  Google Scholar 

  45. Please provide complete bibliographic details for this reference

  46. Ibebunjo C et al. Genomic and proteomic profiling reveals reduced mitochondrial function and disruption of the neuromuscular junction driving rat sarcopenia. Mol Cell Biol. 2013;33:194–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brill KT et al. Single and combined effects of growth hormone and testosterone administration on measures of body composition, physical performance, mood, sexual function, bone turnover, and muscle gene expression in healthy older men. J Clin Endocrinol Metab. 2002;87:5649–57.

    Article  CAS  PubMed  Google Scholar 

  48. Siriett V et al. Antagonism of myostatin enhances muscle regeneration during sarcopenia. Mol Ther. 2007;15:1463–70.

    Article  CAS  PubMed  Google Scholar 

  49. Szulc P, Delmas PD. Bone loss in elderly men: increased endosteal bone loss and stable periosteal apposition: the prospective MINOS study. Osteoporos Int. 2007;18(4):495–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Drake MT, Clarke BL, Lewiecki EM. The pathophysiology and treatment of osteoporosis. Clin Ther. 2015;37(8):1837–50.

    Article  CAS  PubMed  Google Scholar 

  51. Santos A, Bakker AD, Klein-Nulend J. The role of osteocytes in bone mechanotransduction. Osteoporos Int. 2009;20:1027–31.

    Article  CAS  PubMed  Google Scholar 

  52. Baron R, Rawadi G. Minireview: targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology. 2007;148:2635–43.

    Article  CAS  PubMed  Google Scholar 

  53. Spatz JM, Ellman R, Cloutier AM, et al. Sclerostin antibody inhibits skeletal deterioration due to reduced mechanical loading. J Bone Miner Res. 2013;28:865–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Masi L. Crosstalk between the brain and bone. Clin Cases Miner Bone Metab. 2012;9:13–6.

    PubMed  PubMed Central  Google Scholar 

  55. •Gómez-Cabello A, Ara I, González-Agüero A, Casajús JA, Vicente-Rodríguez G. Effects of training on bone mass in older adults: a systematic review. Sports Med. 2012;42(4):301–25. This paper describes preventative measures to belay the effects of aging on the musculoskeletal system.

    Article  PubMed  Google Scholar 

  56. English KL, Loehr JA, Lee SMC, Smith SM. Early-phase musculoskeletal adaptations to different levels of eccentric resistance after 8 weeks of lower body training. Eur J Appl Physiol. 2014;114:2263–80.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie L. Bonne.

Ethics declarations

Conflict of Interest

Drs. Bonne and Livingston declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Geriatric Trauma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonne, S.L., Livingston, D.H. Changes in Organ Physiology in the Aging Adult. Curr Trauma Rep 3, 8–12 (2017). https://doi.org/10.1007/s40719-016-0069-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40719-016-0069-4

Keywords

Navigation