Skip to main content

Advertisement

Log in

Recent Trends in Adsorbent-Based Microextraction of Micropollutants in Environmental Waters

  • Water Pollution (G Toor and L Nghiem, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Adsorbent-based microextraction is a dynamic and simple sample preparation that allows for simultaneous extraction and enrichment of targeted analytes from a sample matrix. Its versatility, efficiency, and compliance with green analysis have contributed to its popularity against conventional solid-phase extraction. This review focuses on the current state of the art, future trends in experimental design, and critical aspects of adsorbent-based microextraction techniques considered for extraction and preconcentration of different classes of micropollutants in environmental waters.

Recent Findings

Despite solid-phase microextraction has shown exceptional flexibility in routine microscale extraction, the other adsorbent-based microanalytical work continues to experience an enormous increase in innovation. Discussions are focused on recent studies utilizing different modes include dispersive, magnetic, bar sorptive, membrane-protected, and thin film for introducing adsorbents in an aqueous media. Cogently, the developed micro-scale procedure using functionalized adsorbent has shown distinct advantages over conventional methods. Modifications were aimed at shortening the time for analysis, minimal waste production, and robustness over the complexity of sample matrices. Adsorbent selection is now widening from commercial materials like activated carbon to newly synthesized materials such as metal-organic framework. The final section discusses the current progress on hybrid approaches and the intended future directions to further explore and popularize the adsorbent-based microextraction.

Summary

This review guides the audiences with an introductory, succinct discussion of the basic concepts of the adsorbent-based microextraction and the success story of the high-throughput real sample analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Li P, Wu J. Drinking water quality and public health. Expo Health. 2019;11:73–9. Available from. https://doi.org/10.1007/s12403-019-00299-8.

    Article  Google Scholar 

  2. Riveros-Perez E, Riveros R. Water in the human body: an anesthesiologist’s perspective on the connection between physicochemical properties of water and physiologic relevance. Ann Med Surg. 2018;26:1–8. Available from. https://doi.org/10.1016/j.amsu.2017.12.007.

    Article  Google Scholar 

  3. Bosmans JHC, van Beek LPH, Sutanudjaja EH, Bierkens MFP. Hydrological impacts of global land cover change and human water use. Hydrol Earth Syst Sci. 2017;21:5603–26. Available from. https://doi.org/10.5194/hess-21-5603-2017.

    Article  Google Scholar 

  4. Saccon P. Water for agriculture, irrigation management. Appl Soil Ecol. 2018;123:793–6. Available from. https://doi.org/10.1016/j.apsoil.2017.10.037.

    Article  Google Scholar 

  5. Ahmed AT, Gohary FE, Tzanakakis VA, Angelakis AN. Egyptian and greek water cultures and hydro-technologies in ancient times. Sustain. 2020;12:9760–85. Available from. https://doi.org/10.3390/su12229760.

    Article  Google Scholar 

  6. Angelakis AN, Antoniou GP, Yapijakis C, Tchobanoglous G. Water in the hellenic asclepieia (i. e., ancient hospitals). Water. 2020;12:754–70. Available from. https://doi.org/10.3390/w12030754.

    Article  Google Scholar 

  7. Liang L, Wang Z, Li J. The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. J Clean Prod. 2019;237:117649. Available from. https://doi.org/10.1016/j.jclepro.2019.117649.

    Article  Google Scholar 

  8. Adeniyi AG, Ighalo JO. A review of steam reforming of glycerol. Chem Pap. 2019;73:2619–35. Available from. https://doi.org/10.1007/s11696-019-00840-8.

    Article  CAS  Google Scholar 

  9. Griggs D, Stafford-Smith M, Gaffney O, Rockstrom J, Ohman MC, Shyamsundar P, et al. Sustainable developmnet goals for people and planet. Nature. 2013;495:305–7.

    Article  CAS  Google Scholar 

  10. Alcamo J. Water quality and its interlinkages with the Sustainable Development Goals. Curr Opin Environ Sustain. 2019;36:126–40. Available from. https://doi.org/10.1016/j.cosust.2018.11.005.

    Article  Google Scholar 

  11. Quinlivan L, Chapman DV, Sullivan T. Validating citizen science monitoring of ambient water quality for the United Nations sustainable development goals. Sci Total Environ. 2020;699:134255. Available from:. https://doi.org/10.1016/j.scitotenv.2019.134255.

    Article  CAS  Google Scholar 

  12. Quinlivan L, Chapman DV, Sullivan T. Applying citizen science to monitor for the Sustainable Development Goal Indicator 6.3.2: A review. Environ Monit Assess. 2020;192:218–28. Available from:. https://doi.org/10.1007/s10661-020-8193-6.

    Article  Google Scholar 

  13. Kanaujiya DK, Paul T, Sinharoy A, Pakshirajan K. Biological treatment processes for the removal of organic micropollutants from wastewater: a review. Curr Pollut Rep. 2019;5:112–28. Available from:. https://doi.org/10.1007/s40726-019-00110-x.

    Article  Google Scholar 

  14. Joss A, Zabczynski S, Göbel A, Hoffmann B, Löffler D, McArdell CS, et al. Biological degradation of pharmaceuticals in municipal wastewater treatment: Proposing a classification scheme. Water Res. 2006;40:1686–96. Available from:. https://doi.org/10.1016/j.watres.2006.02.014.

    Article  CAS  Google Scholar 

  15. Rogowska J, Cieszynska-Semenowicz M, Ratajczyk W, Wolska L. Micropollutants in treated wastewater. Ambio. 2020;49:487–503. Available from:. https://doi.org/10.1007/s13280-019-01219-5.

    Article  Google Scholar 

  16. Munz NA, Burdon FJ, de Zwart D, Junghans M, Melo L, Reyes M, et al. Pesticides drive risk of micropollutants in wastewater-impacted streams during low flow conditions. Water Res. 2017;110:366–77. Available from:. https://doi.org/10.1016/j.watres.2016.11.001.

    Article  CAS  Google Scholar 

  17. Deeb AA, Stephan S, Schmitz OJ, Schmidt TC. Suspect screening of micropollutants and their transformation products in advanced wastewater treatment. Sci Total Environ. 2017;601–602:1247–53. Available from:. https://doi.org/10.1016/j.scitotenv.2017.05.271.

    Article  CAS  Google Scholar 

  18. Barbosa MO, Moreira NFF, Ribeiro AR, Pereira MFR, Silva AMT. Occurrence and removal of organic micropollutants: an overview of the watch list of EU Decision 2015/495. Water Res. 2016;94:257–79. Available from:. https://doi.org/10.1016/j.watres.2016.02.047.

    Article  CAS  Google Scholar 

  19. Besha AT, Gebreyohannes AY, Tufa RA, Bekele DN, Curcio E, Giorno L. Removal of emerging micropollutants by activated sludge process and membrane bioreactors and the effects of micropollutants on membrane fouling: a review. J Environ Chem Eng. 2017;5:2395–414. Available from:. https://doi.org/10.1016/j.jece.2017.04.027.

    Article  CAS  Google Scholar 

  20. Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ. 2014;473–474:619–41. Available from:. https://doi.org/10.1016/j.scitotenv.2013.12.065.

    Article  CAS  Google Scholar 

  21. Bolong N, Ismail AF, Salim MR, Matsuura T. A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination. 2009;239:229–46. Available from:. https://doi.org/10.1016/j.desal.2008.03.020.

    Article  CAS  Google Scholar 

  22. Arthur CL, Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem. 1990;62:2145–8.

    Article  CAS  Google Scholar 

  23. Liu H, Dasgupta PK. Analytical chemistry in a drop. solvent extraction in a microdrop. Anal Chem. 1996;68:1817–21.

    Article  CAS  Google Scholar 

  24. Risticevic S, Vuckovic D, Pawliszyn J. Solid-phase microextraction. In: Pawliszyn J, Lord HL, editors. Handbook of sample preparation. Hoboken: John Wiley & Sons; 2010.

    Google Scholar 

  25. Yu H, Wang Z, Wu R, Chen X, Chan TWD. Water-dispersible pH/thermo dual-responsive microporous polymeric microspheres as adsorbent for dispersive solid-phase extraction of fluoroquinolones from environmental water samples and food samples. J Chromatogr A. 2019;1601:27–34. Available from:. https://doi.org/10.1016/j.chroma.2019.05.004.

    Article  CAS  Google Scholar 

  26. Dou Y, Guo L, Li G, Lv X, Xia L, You J. Amino group functionalized metal-organic framework as dispersive solid-phase extraction sorbent to determine nitrobenzene compounds in water samples. Microchem J. 2019;146:366–73. Available from:. https://doi.org/10.1016/j.microc.2019.01.035.

    Article  CAS  Google Scholar 

  27. Biata NR, Dimpe KM, Ramontja J, Mketo N, Nomngongo PN. Determination of thallium in water samples using inductively coupled plasma optical emission spectrometry (ICP-OES) after ultrasonic assisted-dispersive solid phase microextraction. Microchem J. 2018;137:214–22. https://doi.org/10.1016/j.microc.2017.10.020This article demonstrated a dispersive solid-phase extraction technique for the ultra-trace detection of thallium in water that achieved excellent accuracy compared to the standard protocol as described in NIST SRM 1643e.

    Article  CAS  Google Scholar 

  28. Amiri A, Tayebee R, Abdar A, Narenji SF. Synthesis of a zinc-based metal-organic framework with histamine as an organic linker for the dispersive solid-phase extraction of organophosphorus pesticides in water and fruit juice samples. J Chromatogr A. 2019;1597:39–45. Available from:. https://doi.org/10.1016/j.chroma.2019.03.039.

    Article  CAS  Google Scholar 

  29. Ji Z, Cheng J, Song C, Hu N, Zhou W, Suo Y, et al. A highly sensitive and selective method for determination of phenoxy carboxylic acids from environmental water samples by dispersive solid-phase extraction coupled with ultra high performance liquid chromatography-tandem mass spectrometry. Talanta. 2019;191:313–23. Available from:. https://doi.org/10.1016/j.talanta.2018.08.055.

    Article  CAS  Google Scholar 

  30. Cheng L, Pan S, Ding C, He J, Wang C. Dispersive solid-phase microextraction with graphene oxide based molecularly imprinted polymers for determining bis(2-ethylhexyl) phthalate in environmental water. J Chromatogr A. 2017;1511:85–91. Available from:. https://doi.org/10.1016/j.chroma.2017.07.012.

    Article  CAS  Google Scholar 

  31. Nasrollahpour A, Moradi SE, Baniamerian MJ. Vortex-assisted dispersive solid-phase microextraction using ionic liquid-modified metal-organic frameworks of PAHs from environmental water, vegetable, and fruit juice samples. Food Anal Methods. 2017;10:2815–26. Available from:. https://doi.org/10.1007/s12161-017-0843-0.

    Article  Google Scholar 

  32. Cao X, Jiang Z, Wang S, Hong S, Li H, Zhang C, et al. Metal-organic framework UiO-66 for rapid dispersive solid phase extraction of neonicotinoid insecticides in water samples. J Chromatogr B Anal Technol Biomed Life Sci. 2018;1077–1078:92–7. https://doi.org/10.1016/j.jchromb.2017.11.034The paper describes the application of a new adsorbent that can be recycled at least 10 times for the extraction of insecticides in water.

    Article  CAS  Google Scholar 

  33. Amiri A, Ghaemi F, Maleki B. Hybrid nanocomposites prepared from a metal-organic framework of type MOF-199(Cu) and graphene or fullerene as sorbents for dispersive solid phase extraction of polycyclic aromatic hydrocarbons. Microchim Acta. 2019;186:131–8. Available from:. https://doi.org/10.1007/s00604-019-3246-7.

    Article  CAS  Google Scholar 

  34. Ruiz FJ, Ripoll L, Hidalgo M, Canals A. Dispersive micro solid-phase extraction (DμSPE) with graphene oxide as adsorbent for sensitive elemental analysis of aqueous samples by laser induced breakdown spectroscopy (LIBS). Talanta. 2019;191:162–70. Available from:. https://doi.org/10.1016/j.talanta.2018.08.044.

    Article  CAS  Google Scholar 

  35. Ma JQ, Liu L, Wang X, Chen LZ, Lin JM, Zhao RS. Development of dispersive solid-phase extraction with polyphenylene conjugated microporous polymers for sensitive determination of phenoxycarboxylic acids in environmental water samples. J Hazard Mater. 2019;371:433–9. Available from:. https://doi.org/10.1016/j.jhazmat.2019.03.033.

    Article  CAS  Google Scholar 

  36. Keçili R, Büyüktiryaki S, Dolak İ, Hussain CM. The use of magneticnanoparticles in sample preparation devices and tools. In: Hussain CM, editor. Handbook of nanomaterials in analytical chemistry. USA: Elsevier; 2019.

  37. Jiménez-Soto JM, Cárdenas S, Valcárcel M. Dispersive micro solid-phase extraction of triazines from waters using oxidized single-walled carbon nanohorns as sorbent. J Chromatogr A. 2012;1245:17–23. Available from:. https://doi.org/10.1016/j.chroma.2012.05.016.

    Article  CAS  Google Scholar 

  38. Giakisikli G, Anthemidis AN. Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review. Anal Chim Acta. 2013;789:1–16. Available from:. https://doi.org/10.1016/j.aca.2013.04.021.

    Article  CAS  Google Scholar 

  39. Büyüktiryaki S, Keçili R, Hussain CM. Functionalized nanomaterials in dispersive solid phase extraction: advances & prospects. Trends Anal Chem. 2020;127:115893. Available from:. https://doi.org/10.1016/j.trac.2020.115893.

    Article  CAS  Google Scholar 

  40. Ma J, Wu G, Li S, Tan W, Wang X, Li J, et al. Magnetic solid-phase extraction of heterocyclic pesticides in environmental water samples using metal-organic frameworks coupled to high performance liquid chromatography determination. J Chromatogr A. 2018;1553:57–66. Available from:. https://doi.org/10.1016/j.chroma.2018.04.034.

    Article  CAS  Google Scholar 

  41. Lv Z, Sun Z, Song C, Lu S, Chen G, You J. Sensitive and background-free determination of thiols from wastewater samples by MOF-5 extraction coupled with high-performance liquid chromatography with fluorescence detection using a novel fluorescence probe of carbazole-9-ethyl-2-maleimide. Talanta. 2016;161:228–37. Available from:. https://doi.org/10.1016/j.talanta.2016.08.040.

    Article  CAS  Google Scholar 

  42. Bahrani S, Ghaedi M, Dashtian K, Ostovan A, Mansoorkhani MJK, Salehi A. MOF-5(Zn)-Fe2O4 nanocomposite based magnetic solid-phase microextraction followed by HPLC-UV for efficient enrichment of colchicine in root of colchicium extracts and plasma samples. J Chromatogr B Anal Technol Biomed Life Sci. 2017;1067:45–52. Available from:. https://doi.org/10.1016/j.jchromb.2017.09.044.

    Article  CAS  Google Scholar 

  43. Zhang Z, Chen L, Yang F, Li J. Uniform core-shell molecularly imprinted polymers: a correlation study between shell thickness and binding capacity. RSC Adv. 2014;4:31507–14. Available from:. https://doi.org/10.1039/C4RA03282A.

    Article  CAS  Google Scholar 

  44. Alinezhad H, Amiri A, Tarahomi M, Maleki B. Magnetic solid-phase extraction of non-steroidal anti-inflammatory drugs from environmental water samples using polyamidoamine dendrimer functionalized with magnetite nanoparticles as a sorbent. Talanta. 2018;183:149–57. Available from:. https://doi.org/10.1016/j.talanta.2018.02.069.

    Article  CAS  Google Scholar 

  45. Chen S, Yan J, Li J, Lu D. Dispersive micro-solid phase extraction using magnetic ZnFe2O4 nanotubes as adsorbent for preconcentration of Co(II), Ni(II), Mn(II) and Cd(II) followed by ICP-MS determination. Microchem J. 2019;147:232–8. Available from:. https://doi.org/10.1016/j.microc.2019.02.066.

    Article  CAS  Google Scholar 

  46. Liu S, Li S, Yang W, Gu F, Xu H, Wang T, et al. Magnetic nanoparticle of metal-organic framework with core-shell structure as an adsorbent for magnetic solid phase extraction of non-steroidal anti-inflammatory drugs. Talanta. 2019;194:514–21. Available from:. https://doi.org/10.1016/j.talanta.2018.10.037.

    Article  CAS  Google Scholar 

  47. de Fabio Diasa S, Guarino MEPA, Costa Pereira AL, Pedra PP, de Marcos Bezerra A, Marchetti SG. Optimization of magnetic solid phase microextraction with CoFe2O4 nanoparticles unmodified for preconcentration of cadmium in environmental samples by flame atomic absorption spectrometry. Microchem J. 2019;146:1095–101. Available from:. https://doi.org/10.1016/j.microc.2019.02.005.

    Article  CAS  Google Scholar 

  48. Azizi A, Shahhoseini F, Bottaro CS. Magnetic molecularly imprinted polymers prepared by reversible addition fragmentation chain transfer polymerization for dispersive solid phase extraction of polycyclic aromatic hydrocarbons in water. J Chromatogr A. 2020;1610:460534. Available from:. https://doi.org/10.1016/j.chroma.2019.460534.

    Article  CAS  Google Scholar 

  49. He M, Su S, Chen B, Hu B. Simultaneous speciation of inorganic selenium and tellurium in environmental water samples by polyaniline functionalized magnetic solid phase extraction coupled with ICP-MS detection. Talanta. 2020;207:120314. Available from:. https://doi.org/10.1016/j.talanta.2019.120314.

    Article  CAS  Google Scholar 

  50. Montoro-Leal P, García-Mesa JC, Siles Cordero MT, López Guerrero MM, Vereda AE. Magnetic dispersive solid phase extraction for simultaneous enrichment of cadmium and lead in environmental water samples. Microchem J. 2020;155:104796. Available from:. https://doi.org/10.1016/j.microc.2020.104796.

    Article  CAS  Google Scholar 

  51. Huang Y, Li Y, Luo Q, Huang X. One-step preparation of functional groups-rich graphene oxide and carbon nanotubes nanocomposite for efficient magnetic solid phase extraction of glucocorticoids in environmental waters. Chem Eng J. 2021;406:126785. Available from:. https://doi.org/10.1016/j.cej.2020.126785.

    Article  CAS  Google Scholar 

  52. Baltussen E, Sandra P, David F, Cramers C. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles. J Microcolumn Sep. 1999;11:737–47. Available from:. https://doi.org/10.1002/(SICI)1520-667X(1999)11:10%3C737::AID-MCS7%3E3.0.CO;2-4.

    Article  CAS  Google Scholar 

  53. Hasan CK, Ghiasvand A, Lewis TW, Nesterenko PN, Paull B. Recent advances in stir-bar sorptive extraction: coatings, technical improvements, and applications. Anal Chim Acta. 2020;1139:222–40. Available from:. https://doi.org/10.1016/j.aca.2020.08.021.

    Article  CAS  Google Scholar 

  54. Ahmad SM, Ide AH, Neng NR, Nogueira JMF. Application of bar adsorptive microextraction to determine trace organic micro-pollutants in environmental water matrices. Int J Environ Anal Chem. 2017;97:484–98. Available from:. https://doi.org/10.1080/03067319.2017.1324024.

    Article  CAS  Google Scholar 

  55. Aparicio I, Martín J, Santos JL, Malvar JL, Alonso E. Stir bar sorptive extraction and liquid chromatography–tandem mass spectrometry determination of polar and non-polar emerging and priority pollutants in environmental waters. J Chromatogr A. 2017;1500:43–52. https://doi.org/10.1016/j.chroma.2017.04.007This paper presents a stir bar sorptive extraction for the extraction of a wide group of polar and non-polar pollutants for environmental monitoring application.

    Article  CAS  Google Scholar 

  56. Lei Y, Chen B, You L, He M, Hu B. Polydimethylsiloxane/MIL-100(Fe) coated stir bar sorptive extraction-high performance liquid chromatography for the determination of triazines in environmental water samples. Talanta. 2017;175:158–67. Available from:. https://doi.org/10.1016/j.talanta.2017.05.040.

    Article  CAS  Google Scholar 

  57. Fu YY, Yang CX, Yan XP. Metal-organic framework MIL-100(Fe) as the stationary phase for both normal-phase and reverse-phase high performance liquid chromatography. J Chromatogr A. 2013;1274:137–44. Available from:. https://doi.org/10.1016/j.chroma.2012.12.015.

    Article  CAS  Google Scholar 

  58. Yao X, Zhou Z, He M, Chen B, Liang Y, Hu B. One-pot polymerization of monolith coated stir bar for high efficient sorptive extraction of perfluoroalkyl acids from environmental water samples followed by high performance liquid chromatography-electrospray tandem mass spectrometry detection. J Chromatogr A. 2018;1553:7–15. Available from:. https://doi.org/10.1016/j.chroma.2018.04.014.

    Article  CAS  Google Scholar 

  59. Li J, Li H, Zhang WJ, Bin WY, Su Q, Wu L. Hollow fiber-stir bar sorptive extraction and gas chromatography-mass spectrometry for determination of organochlorine pesticide residues in environmental and food matrices. Food Anal Methods. 2018;11:883–91. Available from:. https://doi.org/10.1007/s12161-017-1053-5.

    Article  Google Scholar 

  60. Gorji S, Biparva P, Bahram M, Nematzadeh G. Stir bar sorptive extraction kit for determination of pesticides in water samples with chemometric data processing. Microchem J. 2019;148:313–21. Available from:. https://doi.org/10.1016/j.microc.2019.04.056.

    Article  CAS  Google Scholar 

  61. Wang Z, He M, Chen B, Hu B. Azo-linked porous organic polymers/polydimethylsiloxane coated stir bar for extraction of benzotriazole ultraviolet absorbers from environmental water and soil samples followed by high performance liquid chromatography-diode array detection. J Chromatogr A. 2020;1616:460793. Available from:. https://doi.org/10.1016/j.chroma.2019.460793.

    Article  CAS  Google Scholar 

  62. Jillani SMS, Ganiyu SA, Alhooshani K. Development of a SBSE-HPLC method using sol-gel based germania coated twister for the analysis of 4-chloro-1-naphthol in biological and water samples. Arab J Chem. 2020;13:3440–7. Available from:. https://doi.org/10.1016/j.arabjc.2018.11.016.

    Article  CAS  Google Scholar 

  63. Fan W, He M, You L, Chen B, Hu B. Spiral stir bar sorptive extraction with polyaniline-polydimethylsiloxane sol-gel packings for the analysis of trace estrogens in environmental water and animal-derived food samples. J Sep Sci. 2020;43:1137–44. Available from:. https://doi.org/10.1002/jssc.201900819.

    Article  CAS  Google Scholar 

  64. Basheer C, Ali Alnedhary A, Rao BSM, Valliyaveettil S, Lee HK. Development and application of porous membrane-protected carbon nanotube micro-solid-phase extraction combined with gas chromatography/mass spectrometry. Anal Chem. 2006;78:2853–8. Available from:. https://doi.org/10.1021/ac060240i.

    Article  CAS  Google Scholar 

  65. Sajid M. Porous membrane protected micro-solid-phase extraction: a review of features, advancements and applications. Anal Chim Acta. 2017;965:36–53. Available from:. https://doi.org/10.1016/j.aca.2017.02.023.

    Article  CAS  Google Scholar 

  66. Hamedi R, Hadjmohammadi MR. Optimization of multiwalled carbon nanotubes reinforced hollow-fiber solid–liquid-phase microextraction for the determination of polycyclic aromatic hydrocarbons in environmental water samples using experimental design. J Sep Sci. 2017;40:3497–505. Available from:. https://doi.org/10.1002/jssc.201700086.

    Article  CAS  Google Scholar 

  67. Nojavan S, Yazdanpanah M. Micro-solid phase extraction of benzene, toluene, ethylbenzene and xylenes from aqueous solutions using water-insoluble β-cyclodextrin polymer as sorbent. J Chromatogr A. 2017;1525:51–9. Available from:. https://doi.org/10.1016/j.chroma.2017.10.027.

    Article  CAS  Google Scholar 

  68. Vosough M, Hassanbeigi Z, Salemi A. Determination of ultraviolet filter compounds in environmental water samples using membrane-protected micro-solid-phase extraction. J Sep Sci. 2018;41:2401–10. Available from:. https://doi.org/10.1002/jssc.201701082.

    Article  CAS  Google Scholar 

  69. Liu Y, Wang D, Du F, Zheng W, Liu Z, Xu Z, et al. Dummy-template molecularly imprinted micro-solid-phase extraction coupled with high-performance liquid chromatography for bisphenol A determination in environmental water samples. Microchem J. 2019;145:337–44. Available from:. https://doi.org/10.1016/j.microc.2018.10.054.

    Article  CAS  Google Scholar 

  70. Gao G, Xing Y, Liu T, Wang J, Hou X. UiO-66(Zr) as sorbent for porous membrane protected micro-solid-phase extraction androgens and progestogens in environmental water samples coupled with LC-MS/MS analysis: the application of experimental and molecular simulation method. Microchem J. 2019;146:126–33. Available from:. https://doi.org/10.1016/j.microc.2018.12.050.

    Article  CAS  Google Scholar 

  71. Bruheim I, Liu X, Pawliszyn J. Thin-Film Microextraction. Anal Chem. 2003;75:1002–10. Available from:. https://doi.org/10.1021/ac026162q.

    Article  CAS  Google Scholar 

  72. Kermani FR, Pawliszyn J. Sorbent coated glass wool fabric as a thin film microextraction device. Anal Chem. 2012;84:8990–5. Available from:. https://doi.org/10.1021/ac301861z.

    Article  CAS  Google Scholar 

  73. Piri-Moghadam H, Gionfriddo E, Rodriguez-Lafuente A, Grandy JJ, Lord HL, Obal T, et al. Inter-laboratory validation of a thin film microextraction technique for determination of pesticides in surface water samples. Anal Chim Acta. 2017;964:74–84. Available from:. https://doi.org/10.1016/j.aca.2017.02.014.

    Article  CAS  Google Scholar 

  74. Piri-Moghadam H, Gionfriddo E, Grandy JJ, Alam MN, Pawliszyn J. Development and validation of eco-friendly strategies based on thin film microextraction for water analysis. J Chromatogr A. 2018;1579:20–30. https://doi.org/10.1016/j.chroma.2018.10.026The paper demonstrated a promising alternative to the standard protocol accredited by USEPA for the accurate on-site extraction of hydrophobic compounds in surface water to minimize the errors that commonly occurred during sampling and transportation of samples.

    Article  CAS  Google Scholar 

  75. Grandy JJ, Galpin V, Singh V, Pawliszyn J. Development of a drone-based thin-film solid-phase microextraction water sampler to facilitate on-site screening of environmental pollutants. Anal Chem. 2020;92:12917–24. https://doi.org/10.1021/acs.analchem.0c01490The article describes a drone-based thin film microextraction sampler coupled with a portable GC-MS for on-site quantitation of target analytes that greatly simplified the on-site monitoring work.

    Article  CAS  Google Scholar 

  76. Loh SH, Sanagi MM, Wan Ibrahim WA, Hasan MN. Multi-walled carbon nanotube-impregnated agarose film microextraction of polycyclic aromatic hydrocarbons in green tea beverage. Talanta. 2013;106:200–5. Available from:. https://doi.org/10.1016/j.talanta.2012.12.032.

    Article  CAS  Google Scholar 

  77. Kamaruzaman S, Hauser PC, Sanagi MM, Ibrahim WAW, Endud S, See HH. A simple microextraction and preconcentration approach based on a mixed matrix membrane. Anal Chim Acta. 2013;783:24–30. Available from:. https://doi.org/10.1016/j.aca.2013.04.042.

    Article  CAS  Google Scholar 

  78. Rozaini MNH, Farihin SN, Saad B, Kamaruzaman S, Abdullah WN, Rahim NA, et al. Molecularly imprinted silica gel incorporated with agarose polymer matrix as mixed matrix membrane for separation and preconcentration of sulfonamide antibiotics in water samples. Talanta. 2019;199:522–31. https://doi.org/10.1016/j.talanta.2019.02.096The paper describes a biopolymer-protected adsorbent in microextraction that offered a double green format technique in supporting green analysis.

    Article  CAS  Google Scholar 

  79. Aow Yong LM, Wan Mohd Khalik WMA, Yusoff F, Loh SH. μ-SPE of bisphenol A in beverage and water using multi-walled carbon nanotubes-reinforced agarose film. Res J Chem Environ. 2019;23:10–5.

    Google Scholar 

  80. Wan Ibrahim WN, Sanagi MM, Mohamad Hanapi NS, Kamaruzaman S, Yahaya N, Wan Ibrahim WA. Solid-phase microextraction based on an agarose-chitosan-multiwalled carbon nanotube composite film combined with HPLC–UV for the determination of nonsteroidal anti-inflammatory drugs in aqueous samples. J Sep Sci. 2018;41:2942–51. Available from:. https://doi.org/10.1002/jssc.201800064.

    Article  CAS  Google Scholar 

  81. Saraji M, Tarami M, Mehrafza N. Preparation of a nano-biocomposite film based on halloysite-chitosan as the sorbent for thin film microextraction. Microchem J. 2019;150:104171. Available from:. https://doi.org/10.1016/j.microc.2019.104171.

    Article  CAS  Google Scholar 

  82. de la Calle I, Ruibal T, Lavilla I, Bendicho C. Direct immersion thin-film microextraction method based on the sorption of pyrrolidine dithiocarbamate metal chelates onto graphene membranes followed by total reflection X-ray fluorescence analysis. Spectrochim Acta - Part B At Spectrosc. 2019;152:14–24. Available from:. https://doi.org/10.1016/j.sab.2018.12.005.

    Article  CAS  Google Scholar 

  83. Chen S, Zhu S, Lu D. Dispersive micro-solid phase extraction coupled with dispersive liquid-liquid microextraction for speciation of antimony in environmental water samples by electrothermal vaporization inductively coupled plasma mass spectrometry. At Spectrosc. 2018;39:55–61. Available from:. https://doi.org/10.1016/j.sab.2017.11.008.

    Article  CAS  Google Scholar 

  84. Lu N, He X, Wang T, Liu S, Hou X. Magnetic solid-phase extraction using MIL-101(Cr)-based composite combined with dispersive liquid-liquid microextraction based on solidification of a floating organic droplet for the determination of pyrethroids in environmental water and tea samples. Microchem J. 2018;137:449–55. Available from:. https://doi.org/10.1016/j.microc.2017.12.009.

    Article  CAS  Google Scholar 

  85. Zhang X, Ma X, Li X, Li C, Wang R, Chen M. Development of ultra-sensitive method for determination of trace atrazine herbicide in environmental water using magnetic graphene oxide-based solid-phase extraction coupled with dispersive liquid-liquid microextraction prior to gas chromatography-mass sp. Water Air Soil Pollut. 2018;229:270–80. Available from:. https://doi.org/10.1007/s11270-018-3930-y.

    Article  CAS  Google Scholar 

  86. Mohd Hassan FW, Muggundha R, Kamaruzaman S, Sanagi MM, Yoshida N, Hirota Y, et al. Dispersive liquid–liquid microextraction combined with dispersive solid-phase extraction for gas chromatography with mass spectrometry determination of polycyclic aromatic hydrocarbons in aqueous matrices. J Sep Sci. 2018;41:3751–63. Available from:. https://doi.org/10.1002/jssc.201800326.

    Article  CAS  Google Scholar 

  87. Rozaini MNH, Yahaya N, Saad B, Kamaruzaman S, Hanapi NSM. Rapid ultrasound assisted emulsification micro-solid phase extraction based on molecularly imprinted polymer for HPLC-DAD determination of bisphenol A in aqueous matrices. Talanta. 2017;171:242–9. Available from:. https://doi.org/10.1016/j.talanta.2017.05.006.

    Article  CAS  Google Scholar 

  88. Tan SC, Lee HK. A metal-organic framework of type MIL-101(Cr) for emulsification-assisted micro-solid-phase extraction prior to UHPLC-MS/MS analysis of polar estrogens. Microchim Acta. 2019;186:165–73. Available from:. https://doi.org/10.1007/s00604-019-3289-9.

    Article  CAS  Google Scholar 

  89. Tan SC, Leow JWS, Lee HK. Emulsification-assisted micro-solid-phase extraction using a metal-organic framework as sorbent for the liquid chromatography-tandem mass spectrometric analysis of polar herbicides from aqueous samples. Talanta. 2020;216:120962. Available from:. https://doi.org/10.1016/j.talanta.2020.120962.

    Article  CAS  Google Scholar 

Download references

Funding

This study received financial support from the Ministry of Education, Malaysia through a research grant with vote numbers 59508 (FRGS/1/2018/STG01/UMT/02/4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saw Hong Loh or Noorfatimah Yahaya.

Ethics declarations

Conflict of Interest

Saw Hong Loh, Noorfatimah Yahaya, Siti Munirah Ishak, Wan Mohd Afiq Wan Mohd Khalik, Nor Syuhadaa Che Abdullah, Hassan Y. Aboul-Enein, and Meng Chuan Ong declare that they have no conflict of interest.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Water Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loh, S.H., Yahaya, N., Ishak, S.M. et al. Recent Trends in Adsorbent-Based Microextraction of Micropollutants in Environmental Waters. Curr Pollution Rep 7, 89–103 (2021). https://doi.org/10.1007/s40726-021-00177-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-021-00177-5

Keywords

Navigation