Skip to main content
Log in

A Quantification Approach to Flexibility Degrees of Fuzzy Numbers and Its Application to Group Decision Making

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

A certain flexibility of decision makers (DMs) is usually requisite for reaching the consensus in group decision making (GDM). When the judgments of DMs are expressed as fuzzy-valued quantities, the required flexibility has been shown. In this paper, we report a quantification approach to flexibility degrees (FDs) of fuzzy numbers and a consensus model in GDM with fuzzy-valued judgments. First, an axiomatic definition of FDs is proposed for fuzzy numbers. Based on a bounded positive scale, the novel formulae are constructed for quantifying the FDs of interval numbers, triangular fuzzy numbers (TFNs), and trapezoidal fuzzy numbers (TPFNs), respectively. The effects of the prototypical values of TFNs and TPFNs on the FDs are addressed. Second, by considering confidence levels and multiplicative reciprocity, the FD of triangular fuzzy multiplicative reciprocal preference relations (TFMRPRs) is calculated. A flexibility-degree-driven operator is provided to aggregate individual TFMRPRs. Third, the consensus degree of DMs is defined and a nonlinear optimization model is constructed to achieve the largest consensus degree. A new algorithm for the consensus model in GDM is elaborated on and the case study is made to illustrate the proposed method. Finally, the sensitivity of the centroid of TFNs on the final solution of a GDM problem is analyzed by numerical examples. The observations reveal that the position of the centroid plays a great role on the FD of TFNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pedrycz, W., Song, M.: Analytic Hierarchy Process (AHP) in group decision making and its optimization with an allocation of information granularity. IEEE Trans. Fuzzy Syst. 19(3), 527–539 (2011)

    Article  Google Scholar 

  2. Yager, R.R.: Families of OWA operators. Fuzzy Sets Syst. 59(2), 125–148 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)

    Article  MATH  Google Scholar 

  4. Kacprzyk, J., Nurmi, H., Fedrizzi, M.: Consensus Under Fuzziness. Kluwer, Boston (1997)

    Book  MATH  Google Scholar 

  5. Pedrycz, W., Chen, S.M.: Granular Computing and Decision-Making: Interactive and Iterative Approaches. Springer, Berlin (2015)

    Book  Google Scholar 

  6. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  7. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  8. Zimmermann, H.J.: Fuzzy Sets, Decision Making, and Expert Systems. Springer, Berlin (1987)

    Book  Google Scholar 

  9. Dubois, D., Prade, H.: Bridging gaps between several forms of granular computing. Granul. Comput. 1(2), 115–126 (2016)

    Article  Google Scholar 

  10. Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, M.M., Ragade, R., Yager, R.R. (eds.) Advances in Fuzzy Set Theory and Applications. North-Holland, Amsterdam (1979)

    Google Scholar 

  11. Liu, F., Pedrycz, W., Liu, X.W.: Flexibility degree of fuzzy numbers and its implication to a group-decision-making model. IEEE Trans. Cybern. 49(12), 4054–4065 (2019)

    Article  Google Scholar 

  12. Liu, F., Huang, M.J., Pedrycz, W., Zhao, H.: Group decision making based on flexibility degree of fuzzy numbers under a confidence level. IEEE Trans. Fuzzy Syst. 29(6), 1640–1653 (2021)

  13. Pap, E.: Handbook of Measure Theory (I, II). Elsevier, New York (2002)

    MATH  Google Scholar 

  14. Liu, B.D.: Uncertainty Theory: A Branch of Mathematics for Modelling Human Uncertainty. Springer, Berlin (2010)

    Book  Google Scholar 

  15. Lu, J., Zhang, G., Ruan, D., Wu, F.: Multi-Objective Group Decision Making: Methods. Software and Applications With Fuzzy Set Techniques. World Scientific Publishing Co., Pte. Ltd., Singapore (2007)

    Book  MATH  Google Scholar 

  16. Herrera-Viedma, E., Chiclana, F., Herrera, F., Alonso, S.: Group decision-making model with incomplete fuzzy preference relations based on additive consistency. IEEE Trans. Syst. Man Cybern. B Cybern. 37(1), 176–189 (2007)

    Article  MATH  Google Scholar 

  17. Liu, X.W.: Some properties of the weighted OWA operator. IEEE Trans. Syst. Man Cybern. B Cybern. 36(1), 118–127 (2006)

    Article  Google Scholar 

  18. Xu, Z.S., Da, Q.L.: An overview of operators for aggregating information. Int. J. Intell. Syst. 18(9), 953–969 (2003)

    Article  MATH  Google Scholar 

  19. Gong, C.J., Su, Y., Liu, W.W., Hu, Y.Z., Zhou, Y.: The distance induced OWA operator with application to multicriteria group decision making. Int. J. Fuzzy Syst. 22(5), 1624–1634 (2020)

    Article  Google Scholar 

  20. Yuan, R.P., Tang, J., Meng, F.Y.: Linguistic intuitionistic fuzzy group decision making based on aggregation operators. Int. J. Fuzzy Syst. 21(2), 407–420 (2019)

    Article  Google Scholar 

  21. Liu, F., Yu, Q., Pedrycz, W., Zhang, W.G.: A group decision making model based on an inconsistency index of interval multiplicative reciprocal matrices. Knowl. Based Syst. 145, 67–76 (2018)

    Article  Google Scholar 

  22. Li, G.X., Kou, G., Peng, Y.: A group decision making model for integrating heterogeneous information. IEEE Trans. Syst. Man Cybern. Syst. 48(6), 982–992 (2018)

    Article  Google Scholar 

  23. Wan, S.P., Li, D.F.: Atanassov’s intuitionistic fuzzy programming method for heterogeneous multiattribute group decision making with Atanassov’s intuitionistic fuzzy truth degrees. IEEE Trans. Fuzzy Syst. 22(2), 300–312 (2014)

    Article  MathSciNet  Google Scholar 

  24. Dong, Y.C., Xu, J.P.: Consensus Building in Group Decision Making. Springer, Singapore (2016)

    Book  Google Scholar 

  25. Herrera-Viedma, E., Cabrerizo, F.J., Kacprzyk, J., Pedrycz, W.: A review of soft consensus models in a fuzzy environment. Inf. Fusion 17, 4–13 (2014)

    Article  Google Scholar 

  26. Xu, Y.J., Xi, Y.X., Cabrerizo, F.J., Herrera-Viedma, E.: An alternative consensus model of additive preference relations for group decision making based on the ordinal consistency. Int. J. Fuzzy Syst. 21(6), 1818–1830 (2019)

    Article  Google Scholar 

  27. Ben-Arieh, D., Easton, T., Evans, B.: Minimum cost consensus with quadratic cost functions. IEEE Trans. Syst Man Cybern. A Syst. 39(1), 210–217 (2009)

    Article  Google Scholar 

  28. Gong, Z.W., Zhang, H.H., Forrest, J., Li, L., Xu, X.: Two consensus models based on the minimum cost and maximum return regarding either all individuals or one individual. Eur. J. Oper. Res. 240(1), 183–192 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pérez, I.J., Cabrerizo, F.J., Alonso, S., Herrera-Viedma, E.: A new consensus model for group decision making problems with non-homogeneous experts. IEEE Trans. Syst. Man Cybern. Syst. 44(4), 494–498 (2014)

    Article  Google Scholar 

  30. Tan, X., Gong, Z.W., Chiclana, F., Zhang, N.: Consensus modeling with cost chance constraint under uncertainty opinions. Appl. Soft Comput. 67, 721–727 (2018)

    Article  Google Scholar 

  31. Cabrerizo, F.J., Ureña, R., Pedrycz, W., Herrera-Viedma, E.: Building consensus in group decision making with an allocation of information granularity. Fuzzy Sets Syst. 255, 115–127 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, F., Wu, Y.H., Pedrycz, W.: A modified consensus model in group decision making with an allocation of information granularity. IEEE Trans. Fuzzy Syst. 26(5), 3182–3187 (2018)

    Article  Google Scholar 

  33. Dong, Y.C., Zha, Q.B., Zhang, H.J., Chiclana, F.: Consensus reaching and strategic manipulation in group decision making with trust relationships. IEEE Trans. Syst. Man Cybern. Syst. 99, 1–15 (2020)

    Google Scholar 

  34. Dong, Y.C., Zha, Q.B., Zhang, H.J., Kou, G., Fujita, H., Chiclana, F., Herrera-Viedma, E.: Consensus reaching in social network group decision making: research paradigms and challenges. Knowl. Based Syst. 162, 3–13 (2018)

    Article  Google Scholar 

  35. Ureña, R., Kou, G., Dong, Y.C., Chiclana, F., Herrera-Viedma, E.: A review on trust propagation and opinion dynamics in social networks and group decision making frameworks. Inf. Sci. 478, 461–475 (2019)

    Article  Google Scholar 

  36. Tan, X., Zhu, J., Cabrerizo, F.J., Herrera-Viedma, E.: A cyclic dynamic trust-based consensus model for large-scale group decision making with probabilistic linguistic information. Appl. Soft Comput. 100, 106937 (2021)

    Article  Google Scholar 

  37. Liu, P.D., Chen, S.M., Wang, P.: Multiple-attribute group decision-making based on q-rung orthopair fuzzy power Maclaurin symmetric mean operators. IEEE Trans. Syst. Man Cybern. Syst. 50(10), 3741–3756 (2020)

  38. Xu, Z.S.: Intuitionistic Preference Modeling and Interactive Decision Making. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  39. Mendel, J.M.: A comparison of three approaches for estimating (synthesizing) an interval type-2 fuzzy set model of a linguistic term for computing with words. Granul. Comput. 1(1), 59–69 (2016)

  40. Wu, Y.Z., Dong, Y.C., Qin, J.D., Pedrycz, W.: Flexible linguistic expressions and consensus reaching with accurate constraints in group decision-making. IEEE Trans. Cybern. 50(5), 2488–2501 (2020)

    Article  Google Scholar 

  41. Cai, M.Y., Li, Y.Z., Han, B., Liu, C.J., Zhang, W.Z.: On a simple and efficient approach to probability distribution function aggregation. IEEE Trans. Syst. Man Cybern. Syst. 47(9), 2444–2453 (2017)

    Google Scholar 

  42. van Laarhoven, P.J.M., Pedrycz, W.: A fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst. 11(1–3), 229–241 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  43. Saaty, T.L.: The Analytic Hierarchy Process. McGrawHill, New York (1980)

    MATH  Google Scholar 

  44. Herrera, F., Herrera-Viedma, E., Chiclana, F.: Multiperson decision-making based on multiplicative preference relations. Eur. J. Oper. Res. 129(2), 372–385 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Liu, F., Pedrycz, W., Wang, Z.X., Zhang, W.G.: An axiomatic approach to approximation-consistency of triangular fuzzy reciprocal preference relations. Fuzzy Sets Syst. 322, 1–18 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yager, R.R.: Quantifier guided aggregation using OWA operators. Int. J. Intell. Syst. 11(1), 49–73 (1996)

    Article  Google Scholar 

  47. Butler, C.T., Rothstein, A.: On Conflict and Consensus: A Hand Book on Formal Consensus Decision Making. Food Not Bombs Publishing, Takoma Park (2006)

    Google Scholar 

  48. Veeramani, C., Duraisamy, C., Sumathi, M.: A note on ranking of L-R fuzzy numbers. Opsearch 50(2), 282–296 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang, Z.J.: Consistency analysis and priority derivation of triangular fuzzy preference relations based on modal value and geometric mean. Inform. Sci. 314, 169–183 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Labella, Á., Liu, H., Rodríguez, R.M., Martínez, L.: A cost consensus metric for consensus reaching processes based on a comprehensive minimum cost model. Eur. J. Oper. Res. 281(2), 316–331 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  51. Labella, Á., Liu, H., Rodríguez, R.M., Martínez, L.: Analyzing the performance of classical consensus models in largescale group decision making: a comparative study. Appl. Soft Comput. 67, 677–690 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 71871072, 71571054), 2017 Guangxi high school innovation team and outstanding scholars plan, the Guangxi Natural Science Foundation for Distinguished Young Scholars (No. 2016GXNSFFA380004), and the Innovation Project of Guangxi Graduate Education (No. YCSW2021044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Huang, CX. & Qiu, MY. A Quantification Approach to Flexibility Degrees of Fuzzy Numbers and Its Application to Group Decision Making. Int. J. Fuzzy Syst. 24, 355–370 (2022). https://doi.org/10.1007/s40815-021-01140-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01140-8

Keywords

Navigation