Skip to main content
Log in

Improving High-Temperature Performance of High Si-Alloyed Ductile Iron by Altering Additions

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

A Correction to this article was published on 20 October 2020

This article has been updated

Abstract

High alloyed Si ferritic ductile irons can offer potential benefits because they combine high strength, ductility at room temperature, and low oxidation rate at high temperature. However, there is one known drawback and that is these cast irons have limited performance during thermal cycling due to a significant drop of ductility at warm temperatures. This decrease in ductility has been linked to poisoning ferrite grain boundaries by Mg. Therefore, thermodynamic simulations were used to identify altering additions which were able to meditate this negative effect by forming intermetallic phases with Mg. To verify thermodynamic predictions, three alloys were cast including a base and two high Si ductile irons with additions of P and Sb. High-temperature performance of these alloys was experimentally verified including tensile properties at warm temperatures (350–550 °C), oxidation in air at temperatures (700–800 °C), and thermal cycling between 300 and 800 °C. SEM and TEM analyses confirmed that the studied additions reacted with Mg forming different compounds which could prevent poisoning ferrite grain boundaries and improve high-temperature performance of high Si ductile iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

Change history

References

  1. European Standard EN-1563: Spheroidal graphite cast irons (2018)

  2. R. Larker, China Found. 6(4), 343–351 (2009)

    CAS  Google Scholar 

  3. F. Tholence, M. Norell, Oxid. Met. 69, 13 (2008)

    Article  CAS  Google Scholar 

  4. M. Ekström, P. Szakalos, S. Jonsson, Oxid. Met. 80(5–6), 455 (2013)

    Article  Google Scholar 

  5. N. Scheidhauer, C. Dommaschk, G. Wolf, Mater. Sci. Forum 925, 393 (2017)

    Article  Google Scholar 

  6. P. Weiß, Mater. Sci. Eng. A 713, 67 (2018)

    Article  Google Scholar 

  7. M. Takanezawa, Y. Tomota, Y. Kobayashi, ISIJ Int. 38(1), 106 (1998)

    Article  CAS  Google Scholar 

  8. T.S. Lui, C.G. Chao, J. Mater. Sci. 24, 2503 (1989)

    Article  CAS  Google Scholar 

  9. J. Laine, K. Jalava, J. Vaara et al., The mechanical properties of ductile iron at intermediate temperatures: the effect of silicon content and pearlite fraction. Inter Metalcast (2020). https://doi.org/10.1007/s40962-020-00473-8

    Article  Google Scholar 

  10. M. Ekström, Oxidation and Corrosion Fatigue Aspects of Cast Exhaust Manifolds, Doctoral Thesis, Stockholm, Sweden (2015)

  11. D.G. Bon, M.H. Ferreira, W.W. Bose Filho et al., Fracture micromechanisms evaluation of high-strength cast irons under thermomechanical fatigue conditions. Inter Metalcast 14, 696–705 (2020). https://doi.org/10.1007/s40962-019-00399-w

    Article  CAS  Google Scholar 

  12. K. Roehrig, Thermal fatigue of gray and ductile irons. AFS Trans 86, 75–88 (1978)

    CAS  Google Scholar 

  13. E. Pan, C. Fan, H. Chang, High temperature thermal fatigue property of thin-section ductile cast iron. AFS Trans. 118, 265–276 (2010)

    CAS  Google Scholar 

  14. X. Wu, G. Quan, R. Macheil, Z. Zang, X. Liu, C. Sloss, Metal. Mater. Trans. A 46A, 2530 (2015)

    Article  Google Scholar 

  15. X. Wu, G. Quan, R. Macheil, Z. Zang, X. Liu, C. Sloss, Metal. Mater. Trans. A 45A, 5085 (2014)

    Article  Google Scholar 

  16. K. Avery, PhD Thesis, The University of Michigan (2016)

  17. O. Celik, H. Ahlatci, E. Kayali, H. Cimenog, ISIJ Int. 43(8), 1274 (2003)

    Article  CAS  Google Scholar 

  18. X. Wu, G. Quan, R. Macheil, Z. Zang, X. Liu, C. Sloss, Metal. Mater. Trans. A 45A, 2014 (2014)

    Google Scholar 

  19. M. Takanezawa, Y. Kobayashi, Y. Tomota, J. JFS 69, 41 (1997)

    CAS  Google Scholar 

  20. C. Cheng, T. Lui, L. Chen, Metal. Mater. Trans. A 30A(06), 1549 (1999)

    Article  CAS  Google Scholar 

  21. H. Lin, T. Lui, L. Chen, Metal. Mater. Trans. A 44A(6), 1209 (2003)

    Google Scholar 

  22. O. Yanagisawa, J. JFS 72, 604 (2000)

    CAS  Google Scholar 

  23. T. Kanno, Problems and improvements on the production of large casting with Hi–Si ductile iron. Inter Metalcast 13, 491–499 (2019)

    Article  CAS  Google Scholar 

  24. D. Li, C. Sloss, Brittleness at medium temperature of spheroidal graphite, mixed graphite, and compacted graphite high-silicon molybdenum cast irons. AFS Trans. 132, 243–253 (2015)

    Google Scholar 

  25. O. Tsumura, Y. Ichinomiya, T. Miyamoto, T. Takenouchi, Imono 67(8), 540 (1995)

    CAS  Google Scholar 

  26. L. Dekker, B. Tonn, G. Lilienkamp, Effect of antimony on graphite growth in ductile iron. Inter Metalcast 14, 827–835 (2020). https://doi.org/10.1007/s40962-020-00434-1

    Article  CAS  Google Scholar 

  27. Z. Yuan, A. Guo, S. Chen, D. Shen, J. Jia, S. Song, J. Mater. Sci. Lett. 22, 311 (2003)

    Article  CAS  Google Scholar 

  28. S. Lekakh, V. Richards, N. Medvedeva, Effect of Si segregation on low temperature toughness of ductile iron. AFS Trans. 120, 319–327 (2012)

    CAS  Google Scholar 

  29. D. Franzen, P. Weiß, B. Pustal, A. Bührig-Polaczek, Mater. Sci. Technol. 35(6), 687 (2019)

    CAS  Google Scholar 

  30. P. Weiß, A. Tekavčič, A. Bührig-Polaczek, Mater. Sci. Eng. A 713(24), 67 (2018)

    Article  Google Scholar 

  31. S. Lekakh, V. Richards, Diffusion modeling and experimental verification of pearlite/ferrite formation in ductile iron. AFS Trans. 118, 225–232 (2010)

    CAS  Google Scholar 

  32. S. Lekakh, Metal. Mater. Trans. B 50B, 890 (2019)

    Article  Google Scholar 

  33. FACTSAGE 7.3 thermodynamic software. www.factsage.com

  34. Adaptive thermal analysis (ATAS), Novacast, SE. https://www.novacast.se/product/atas/ATAS

  35. T. Hara, K. Kuroki, S. Ikeno, S. Saikawa, K. Terayama, K. Matsuda, in The 8th Pacific Rim International Congress on Advanced Materials and Processing Edited by: Fernand Marquis, TMS (2013)

  36. L. Zhe, C. Weiping, D. Yu, China Foundry 9(2), 114 (2012)

    Google Scholar 

  37. K. Theuwissen, J. Lacaza, L. Laffont, Carbon 96, 1120 (2016)

    Article  CAS  Google Scholar 

  38. K. Jalava, K. Soivio, J. Laine et al., Effect of silicon and microstructure on spheroidal graphite cast iron thermal conductivity at elevated temperatures. Inter Metalcast 12, 480–486 (2018). https://doi.org/10.1007/s40962-017-0184-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Award Number DE-EE0008458. We thank Dr. Wei-Ting Chen for TEM work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon N. Lekakh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the original version of the article, Fig. 4b was processed incorrectly by the publisher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lekakh, S.N., Johnson, C., Bofah, A. et al. Improving High-Temperature Performance of High Si-Alloyed Ductile Iron by Altering Additions. Inter Metalcast 15, 874–888 (2021). https://doi.org/10.1007/s40962-020-00524-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-020-00524-0

Keywords

Navigation