Skip to main content
Log in

2-D Dam-Break Flow Modeling Based on Weighted Average Flux Method

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Civil Engineering Aims and scope Submit manuscript

Abstract

A two-dimensional flow model based on shallow water equations is developed for modeling dam-break flows. The spatial discretization is obtained by the finite volume cell centered type method. The numerical system is solved in explicit way. The flux modeling has been deployed by TVD WAF scheme with a second-order accuracy in both time and space. The local Riemann problem is solved by the HLLC method in the interface of the cells. The numerical model is verified by comparison of model results and analytical solutions. Then the results of numerical model are compared with available experimental data of dam-break waves in a channel with 90° and 180° deviation angle and in a straight channel over a triangular bottom sill. The results confirm the reasonable performance of the present model in predicting dam-break waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ata R, Pavan S, Khelladi S, Toro EF (2013) A Weighted Average Flux (WAF) scheme applied to shallow water equations for real-life applications. Adv Water Resour 62:155–172

    Article  Google Scholar 

  • Aureli F, Maranzoni A, Mignosa P, Ziveri C (2008) A weighted surface-depth gradient method for the numerical integration of the 2D shallow water equations with topography. Adv Water Resour 31(7):962–974

    Article  Google Scholar 

  • Bell SW, Elliot RC, Hanif Chaudhry M (1992) Experimental results of two-dimensional dam-break flows. J Hydraul Res 30(2):225–252

    Article  Google Scholar 

  • Benkhaldoun F, Sari S, Seaid M (2015) Projection finite volume method for shallow water flows. Math Comput Simul 118:87–101

    Article  MathSciNet  Google Scholar 

  • Chung TJ (2010) Computational fluid dynamics. Cambridge University Press

    Book  Google Scholar 

  • Einfeldt B, Munz CD, Roe PL, Sjögreen B (1991) On Godunov-type methods near low densities. J Comput Phys 92(2):273–295

    Article  MathSciNet  Google Scholar 

  • Erduran KS, Kutija V, Hewett CJM (2002) Performance of finite volume solutions to the shallow water equations with shock-capturing schemes. Int J Numer Meth Fluids 40(10):1237–1273

    Article  MathSciNet  Google Scholar 

  • Gallardo JM, Schneider KA, Castro MJ (2019) On a class of two-dimensional incomplete Riemann solvers. J Comput Phys 386:541–567

    Article  MathSciNet  Google Scholar 

  • Fraccarollo L, Toro EF (1995) Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems. J Hydraul Res 33(6):843–864

    Article  Google Scholar 

  • Gupta SC (2019) Numerical grid generation and parallel computations. J Aerosp Eng Technol 5(1):11–22

    Google Scholar 

  • Hosseinzadeh-Tabrizi A, Ghaeini-Hessaroeyeh M (2015) Coupled dam-break flow and bed load modelling using HLLC-WAF scheme. Water Sci Technol 72(7):1155–1167

    Article  Google Scholar 

  • Kocaman S, Ozmen-Cagatay H (2015) Investigation of dam-break induced shock waves impact on a vertical wall. J Hydrol 525:1–12

    Article  Google Scholar 

  • Liang Q, Borthwick AGL, Stelling G (2004) Simulation of dam-and dyke-break hydrodynamics on dynamically adaptive quadtree grids. Int J Numer Meth Fluids 46(2):127–162

    Article  Google Scholar 

  • Liang D, Lin B, Falconer RA (2007) Simulation of rapidly varying flow using an efficient TVD–MacCormack scheme. Int J Numer Meth Fluids 53(5):811–826

    Article  Google Scholar 

  • Munoz DH, Constantinescu G (2020) 3-D dam break flow simulations in simplified and complex domains. Adv Water Resour 103510

  • Muscat L, Puigt G, Montagnac M, Brenner P (2019) A coupled implicit-explicit time integration method for compressible unsteady flows. J Comput Phys 398:183

    Article  MathSciNet  Google Scholar 

  • Ozmen-Cagatay H, Kocaman S (2010) Dam-break flows during initial stage using SWE and RANS approaches. J Hydraul Res 48(5):603–611

    Article  Google Scholar 

  • Ozmen-Cagatay H, Kocaman S, Guzel H (2014) Investigation of dam-break flood waves in a dry channel with a hump. J Hydro Environ Res 8(3):304–315

    Article  Google Scholar 

  • Pongsanguansin T, Maleewong M, Mekchay K (2015) Consistent weighted average flux of well-balanced TVD-RK discontinuous galerkin method for shallow water flows. Modelling and simulation in Engineering, pp. 591282

  • Pongsanguansin T, Maleewong M, Mekchay K (2016) Shallow-water simulations by a well-balanced WAF finite volume method: a case study to the great flood in 2011. Thailand Comput Geosci 20(6):1269–1285

    Article  MathSciNet  Google Scholar 

  • Soares-Frazão S (2007) Experiments of dam-break wave over a triangular bottom sill. J Hydraul Res 45(sup1):19–26

    Article  MathSciNet  Google Scholar 

  • Soares Frazao S, Abbeels S, Messens M (2019) Dam-break flow in a channel with a 90° bend and mobile bed: experimental and numerical simulations. In: 38th IAHR world congress

  • Toro EF (1992) Riemann problems and the WAF method for solving the two-dimensional shallow water equations. Philos Trans Roy Soc Lond Ser A Phys Eng Sci 338(1649):43–68

    MathSciNet  MATH  Google Scholar 

  • Toro EF, Spruce M, Speares W (1994) Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4(1):25–34

    Article  Google Scholar 

  • Toro EF (2001) Shock-capturing methods for free-surface shallow flows, vol 868. Wiley, New York

    MATH  Google Scholar 

  • Toro EF, Garcia-Navarro P (2007) Godunov-type methods for free-surface shallow flows: a review. J Hydraul Res 45(6):736–751

    Article  Google Scholar 

  • Toro, E.F., 2013. Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer Science & Business Media.

  • Valiani A, Caleffi V, Zanni A (2002) Case study: Malpasset dam-break simulation using a two-dimensional finite volume method. J Hydraul Eng 128(5):460–472

    Article  Google Scholar 

  • Xia J, Lin B, Falconer RA, Wang G (2010) Modelling dam-break flows over mobile beds using a 2-D coupled approach. Adv Water Resour 33(2):171–183

    Article  Google Scholar 

  • Zia A, Banihashemi MA (2008) Simple efficient algorithm (SEA) for shallow flows with shock wave on dry and irregular beds. Int J Numer Meth Fluids 56(11):2021–2043

    Article  MathSciNet  Google Scholar 

  • Zoppou C, Roberts S (2003) Explicit schemes for dam-break simulations. J Hydraul Eng 129(1):11–34

    Article  Google Scholar 

  • Zhou JG, Causon DM, Ingram DM, Mingham CG (2002) Numerical solutions of the shallow water equations with discontinuous bed topography. Int J Numer Meth Fluids 38(8):769–788

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahnaz Ghaeini-Hessaroeyeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaeini-Hessaroeyeh, M., Namin, M.M. & Fadaei-Kermani, E. 2-D Dam-Break Flow Modeling Based on Weighted Average Flux Method. Iran J Sci Technol Trans Civ Eng 46, 1515–1525 (2022). https://doi.org/10.1007/s40996-021-00708-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-021-00708-6

Keywords

Navigation