Skip to main content
Log in

Chemical Approaches to Studying Labile Amino Acid Phosphorylation

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Phosphorylation of serine, threonine, and tyrosine residues is the archetypal posttranslational modification of proteins. While phosphorylation of these residues has become standard textbook knowledge, phosphorylation of other amino acid side chains is underappreciated and minimally characterized by comparison. This disparity is rooted in the relative instability of these chemically distinct amino acid side chain moieties, namely phosphoramidates, acyl phosphates, thiophosphates, and phosphoanhydrides. In the case of the O-phosphorylated amino acids, synthetic constructs were critical to assessing their stability and developing tools for their study. As the chemical biology community has become more aware of these alternative phosphorylation sites, methodology has been developed for the synthesis of well-characterized standards and close mimics of these phosphorylated amino acids as well. In this article, we review the synthetic chemistry that is a prerequisite to progress in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1a,b
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 3
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Fig. 4
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Fig. 5
Fig. 6
Scheme 19
Scheme 20
Fig. 7

Similar content being viewed by others

References

  1. Hunter T (2012) Why nature chose phosphate to modify proteins. Philos Trans R Soc B Biol Sci 367:2513–2516

    Article  CAS  Google Scholar 

  2. Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9:28–39

    Article  CAS  Google Scholar 

  3. Freschi L, Osseni M, Landry CR (2014) Functional divergence and evolutionary turnover in mammalian phosphoproteomes. PLoS Genet 10:e1004062

    Article  CAS  Google Scholar 

  4. Bhandari R, Saiardi A, Ahmadibeni Y, Snowman AM, Resnick AC, Kristiansen TZ, Molina H, Pandey A, Werner JK, Juluri KR, Xu Y, Prestwich GD, Parang K, Snyder SH (2007) Protein pyrophosphorylation by inositol pyrophosphates is a posttranslational event. Proc Natl Acad Sci USA 104:15305–15310

    Article  CAS  Google Scholar 

  5. Azevedo C, Livermore T, Saiardi A (2015) Protein polyphosphorylation of lysine residues by inorganic polyphosphate. Mol Cell 58:71–82

    Article  CAS  Google Scholar 

  6. Attwood PV, Piggott MJ, Zu XL, Besant PG (2007) Focus on phosphohistidine. Amino Acids 32:145–156

    Article  CAS  Google Scholar 

  7. Besant PG, Attwood PV, Piggott MJ (2009) Focus on phosphorarginine and phospholysine. Curr Protein Pept Sci 10:536–550

    Article  CAS  Google Scholar 

  8. Attwood PV, Besant PG, Piggott MJ (2011) Focus on phosphoaspartate and phosphoglutamate. Amino Acids 40:1035–1051

    Article  CAS  Google Scholar 

  9. Boyer PD, DeLuca M, Ebner KE, Hultquist DE, Peter JB (1962) Identification of phosphohistidine digests from a probable intermediate of qxidative phosphorylation. J Biol Chem 237:PC3306–PC3308

    CAS  Google Scholar 

  10. Perry J, Koteva K, Wright G (2011) Receptor domains of two-component signal transduction systems. Mol BioSyst 7:1388–1398

    Article  CAS  Google Scholar 

  11. Khorchid A, Ikura M (2006) Bacterial histidine kinase as signal sensor and transducer. Int J Biochem Cell Biol 38:307–312

    Article  CAS  Google Scholar 

  12. Neiditch MB, Federle MJ, Miller ST, Bassler BL, Hughson FM (2005) Regulation of LuxPQ receptor activity by the quorum-sensing signal autoinducer-2. Mol Cell 18:507–518

    Article  CAS  Google Scholar 

  13. Mayville P, Ji G, Beavis R, Yang H, Goger M, Novick RP, Muir TW (1999) Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc Natl Acad Sci USA 96:1218–1223

    Article  CAS  Google Scholar 

  14. Koteva K, Hong H-J, Wang XD, Nazi I, Hughes D, Naldrett MJ, Buttner MJ, Wright GD (2010) A vancomycin photoprobe identifies the histidine kinase VanSsc as a vancomycin receptor. Nat Chem Biol 6:327–329

    Article  CAS  Google Scholar 

  15. Chen CC, Smith DL, Bruegger BB, Halpern RM, Smith RA (1974) Occurrence and distribution of acid-labile histone phosphates in regenerating rat liver. Biochemistry 13:3785–3789

    Article  CAS  Google Scholar 

  16. Kee JM, Villani B, Carpenter LR, Muir TW (2010) Development of stable phosphohistidine analogues. J Am Chem Soc 132:14327–14329

    Article  CAS  Google Scholar 

  17. Kee JM, Muir TW (2012) Chasing phosphohistidine, an elusive sibling in the phosphoamino acid family. ACS Chem Biol 7:44–51

    Article  CAS  Google Scholar 

  18. Morera S, Chiadmi M, LeBras G, Lascu I, Janin J (1995) Mechanism of phosphate transfer by nucleoside diphosphate kinase: X-ray structures of the phosphohistidine intermediate of the enzymes from Drosophila and Dictyostelium. Biochemistry 34:11062–11070

    Article  CAS  Google Scholar 

  19. Bond CS, White MF, Hunter WN (2001) High resolution structure of the phosphohistidine-activated form of Escherichia coli cofactor-dependent phosphoglycerate mutase. J Biol Chem 276:3247–3253

    Article  CAS  Google Scholar 

  20. Hultquist DE (1968) The preparation and characterization of phosphorylated derivatives of histidine. Biochim Biophys Acta Bioenerg 153:329–340

    Article  CAS  Google Scholar 

  21. Duclos B, Marcandier S, Cozzone AJ (1991) Chemical properties and separation of phosphoamino acids by thin-layer chromatography and/or electrophoresis. Methods Enzymol 201:10–21

    Article  CAS  Google Scholar 

  22. Lloyd GJ, Cooperman BS (1971) Nucleophilic attack by zinc (II)-pyridine-2-carbaldoxine anion on phosphorylimidazole. A model for enzymatic phosphate transfer. J Am Chem Soc 93:4883–4889

    Article  CAS  Google Scholar 

  23. Hohenester UM, Ludwig K, König S (2013) Chemical phosphorylation of histidine residues in proteins using potassium phosphoramidate—a tool for the analysis of acid-labile phos- phorylation. Curr Drug Deliv 10:58–63

    Article  CAS  Google Scholar 

  24. Medzihradszky KF, Phillipps NJ, Senderowicz L, Wang P, Turck CW (1997) Synthesis and characterization of histidine-phosphorylated peptides. Protein Sci 6:1405–1411

    Article  CAS  Google Scholar 

  25. Attwood PV, Ludwig K, Bergander K, Besant PG, Adina-Zada A, Krieglstein J, Klumpp S (2010) Chemical phosphorylation of histidine-containing peptides based on the sequence of histone H4 and their dephosphorylation by protein histidine phosphatase. Biochim Biophys Acta Proteins Proteomics 1804:199–205

    Article  CAS  Google Scholar 

  26. Gustafson C, Wagner-Jauregg T (1954) Phosphorimidazole and phosphohistidine. Fed Proc 13:222

    Google Scholar 

  27. Rosenberg TH (1964) A simple preparation method for diphosphoimidazole. Arch Biochem Biophys 105:315–318

    Article  CAS  Google Scholar 

  28. Muller T, Rathlev T, Rosenberg T (1956) Special cases of non-enzymic transphosphorylation. Biochim Biophys Acta 19:563–564

    Article  CAS  Google Scholar 

  29. Wagner-Jauregg T, Hackley BE (1953) Model reactions of phosphorus-containing enzyme inactivators. III. Interaction of imidazole, pyridine, and some of their derivatives with dialkyl halogeno-phosphates. J Am Chem Soc 75:2125–2130

    Article  CAS  Google Scholar 

  30. Hultquist DE, Moyer RW, Boyer PD (1966) The preparation and characterization of 1-phosphohistidine and 3-phosphohistidine. Biochemistry 5:322–331

    Article  CAS  Google Scholar 

  31. Wei Y-F, Matthews HR (1991) Identification of phosphohistidine in proteins and purification of protein-histidine kinases. Methods Enzymol 200:388–414

    Article  CAS  Google Scholar 

  32. Kowalewska K, Stefanowicz P, Ruman T, Frączyk T, Rode W, Szewczuk Z (2010) Electron capture dissociation mass spectrometric analysis of lysine-phosphorylated peptides. Biosci Rep 30:433–443

    Article  CAS  Google Scholar 

  33. Kee J-M, Oslund RC, Perlman DH, Muir TW (2013) A pan-specific antibody for direct detection of protein histidine phosphorylation. Nat Chem Biol 9:416–421

    Article  CAS  Google Scholar 

  34. Oslund RC, Kee JM, Couvillon AD, Bhatia VN, Perlman DH, Muir TW (2014) A phosphohistidine proteomics strategy based on elucidation of a unique gas-phase phosphopeptide fragmentation mechanism. J Am Chem Soc 136:12899–12911

    Article  CAS  Google Scholar 

  35. Schenkels C, Erni B, Reymond J-L (1999) Phosphofurylalanine, a stable analog of phosphohistidine. Bioorganic Med Chem Lett 9:1443–1446

    Article  CAS  Google Scholar 

  36. McAllister TE, Webb ME (2012) Triazole phosphohistidine analogues compatible with the Fmoc-strategy. Org Biomol Chem 10:4043–4049

    Article  CAS  Google Scholar 

  37. Kee JM, Oslund RC, Couvillon AD, Muir TW (2015) A second-generation phosphohistidine analog for production of phosphohistidine antibodies. Org Lett 17:187–189

    Article  CAS  Google Scholar 

  38. Lilley MB, Mambwe B, Thompson MJ, Jackson RFW, Muimo R (2015) 4-Phosphopyrazol-2-yl alanine: a non-hydrolysable analogue of phosphohistidine. Chem Commun 51:7305–7308

    Article  CAS  Google Scholar 

  39. Fuhs SR, Meisenhelder J, Aslanian A, Ma L, Zagorska A, Stankova M, Binnie A, Al-Obeidi F, Mauger J, Lemke G, Yates JR, Hunter T (2015) Monoclonal 1- and 3-phosphohistidine antibodies: new tools to study histidine phosphorylation. Cell 162:198–210

    Article  CAS  Google Scholar 

  40. Ennor AH, Morrison JF (1958) Biochemstry of the phosphagens and related guanidines. Physiol Rev 36:631–674

    Google Scholar 

  41. Cieśla J, Fraczyk T, Rode W (2011) Phosphorylation of basic amino acid residues in proteins: important but easily missed. Acta Biochim Pol 58:137–148

    Google Scholar 

  42. Fuhrmann J, Clancy KW, Thompson PR (2015) Chemical biology of protein arginine modifications in epigenetic regulation. Chem Rev 115:5413–5461

    Article  CAS  Google Scholar 

  43. Fuhrmann J, Schmidt A, Spiess S, Lehner A, Turgay K, Mechtler K, Charpentier E, Clausen T (2009) McsB is a protein arginine kinase that phosphorylates and inhibits the heat-shock regulator CtsR. Science 324:1323–1327

    Article  CAS  Google Scholar 

  44. Elsholz AKW, Turgay K, Michalik S, Hessling B, Gronau K, Oertel D, Mader U, Bernhardt J, Becher D, Hecker M, Gerth U (2012) Global impact of protein arginine phosphorylation on the physiology of Bacillus subtilis. Proc Natl Acad Sci USA 109:7451–7456

    Article  CAS  Google Scholar 

  45. Schmidt A, Trentini DB, Spiess S, Fuhrmann J, Ammerer G, Mechtler K, Clausen T (2014) Quantitative phosphoproteomics reveals the role of protein arginine phosphorylation in the bacterial stress response. Mol Cell Proteomics 13:537–550

    Article  CAS  Google Scholar 

  46. Mijakovic I, Grangeasse C, Turgay K (2016) Exploring the diversity of protein modifications: special bacterial phosphorylation systems. FEMS Microbiol Rev 40:398–417

    Article  Google Scholar 

  47. Wozniak DJ, Tiwari KB, Soufan R, Jayaswal RK (2012) The mcsB gene of the clpC operon is required for stress tolerance and virulence in Staphylococcus aureus. Microbiology 158:2568–2576

    Article  CAS  Google Scholar 

  48. Trentini DB, Suskiewicz MJ, Heuck A, Kurzbauer R, Deszcz L, Mechtler K, Clausen T (2016) Arginine phosphorylation marks proteins for degradation by a Clp protease. Nature 539:48–53

    Article  CAS  Google Scholar 

  49. Fujitaki JM, Smith RA (1984) Techniques in the detection and characterization of phosphoramidate-containing proteins. Methods Enzymol 107:23–36

    Article  CAS  Google Scholar 

  50. Ellington WR (2001) Evolution and physiological roles of phosphagen systems. Annu Rev Physiol 63:289–325

    Article  CAS  Google Scholar 

  51. Trentini DB, Fuhrmann J, Mechtler K, Clausen T (2014) Chasing phosphoarginine proteins: development of a selective enrichment method using a phosphatase trap. Mol Cell Proteomics mcp.O113.035790

  52. Schmidt A, Ammerer G, Mechtler K (2013) Studying the fragmentation behavior of peptides with arginine phosphorylation and its influence on phospho-site localization. Proteomics 13:945–954

    Article  CAS  Google Scholar 

  53. Marcus F, Morrison JF (1964) The preparation of phosphoarginine: a comparative study. Biochem J 92:429–435

    Article  CAS  Google Scholar 

  54. Cramer F, Scheiffele E, Vollmar A (1962) Die synthese der argininphosphorsäure und die reaktion von isoureidophosphonaten mit aminen. Chem Ber 95:1670–1682

    Article  CAS  Google Scholar 

  55. Kumon A, Yokoi F, Hiraishi H (1996) N-phosphoarginine phosphatase (17 kDa) and alkaline phosphatase as protein arginine phosphatases. J Biochem 119:719–724

    Article  CAS  Google Scholar 

  56. Hofmann FT, Lindemann C, Salia H, Adamitzki P, Karanicolas J, Seebeck FP (2011) A phosphoarginine containing peptide as an artificial SH2 ligand. Chem Commun (Camb) 47:10335–10337

    Article  CAS  Google Scholar 

  57. Fuhrmann J, Mierzwa B, Trentini DB, Spiess S, Lehner A, Charpentier E, Clausen T (2013) Structural basis for recognizing phosphoarginine and evolving residue-specific protein phosphatases in Gram-positive bacteria. Cell Rep 3:1832–1839

    Article  CAS  Google Scholar 

  58. Fuhrmann J, Subramanian V, Thompson PR (2015) Synthesis and use of a phosphonate amidine to generate an anti-phosphoarginine-specific antibody. Angew Chemie Int Ed 54:14715–14718

    Article  CAS  Google Scholar 

  59. Ouyang H, Fu C, Fu S, Ji Z, Sun Y, Deng P, Zhao Y (2016) Development of a stable phosphoarginine analog for producing phosphoarginine antibodies. Org Biomol Chem 14:1925–1929

    Article  CAS  Google Scholar 

  60. Zetterqvist Ö, Engström L (1967) Isolation of N-ε-[32P]phosphoryl-lysine from rat-liver cell sap after incubation with [32P] adenosine triphosphate. Biochem Biophisycal Acta 141:523–532

    Article  CAS  Google Scholar 

  61. Wålinder O (1968) Identification of a phosphate-incorporating protein from bovine liver as nucleoside identification of a phosphate-incorporating protein from bovine liver as nucleoside diphosphate kinase and isolation of and N-e-32-P-phospholysine from erythrocytic nucleo. J Biol Chem 243:3947–3952

    Google Scholar 

  62. Chen CC, Bruegger BB, Kern CW, Lin YC, Halpern RM, Smith RA (1977) Phosphorylation of nuclear proteins in rat regenerating liver. Biochemistry 16:4852–4855

    Article  CAS  Google Scholar 

  63. Smith DL, Bruegger BB, Halpern RM, Smith RA (1973) New histone kinases in nuclei of rat tissues. Nature 246:103–104

    Article  Google Scholar 

  64. Postel EH, Abramczyk BM, Levit MN, Kyin S (2000) Catalysis of DNA cleavage and nucleoside triphosphate synthesis by NM23-H2/NDP kinase share an active site that implies a DNA repair function. Proc Natl Acad Sci USA 97:14194–14199

    Article  CAS  Google Scholar 

  65. Ohmori H, Kuba M, Kumon A (1994) 3-Phosphohistidine/6-phospholysine phosphatase from rat brain as. J Biochem 116:380–385

    Article  CAS  Google Scholar 

  66. Benkovic SJ, Sampson EJ (1971) Structure-reactivity correlation for the hydrolysis of phosphoramidate monoanions. J Am Chem Soc 93:4009–4016

    Article  CAS  Google Scholar 

  67. Modro TA (1981) Phosphoric and carboxylic amides. ACS Symp Ser 171:619–622

    Article  CAS  Google Scholar 

  68. Denehy E, White JM, Williams SJ (2007) Electronic structure of the sulfonyl and phosphonyl groups: a computational and crystallographic study. Inorg Chem 46:8871–8886

    Article  CAS  Google Scholar 

  69. Bertran-Vicente J, Serwa RA, Schümann M, Schmieder P, Krause E, Hackenberger CPR (2014) Site-specifically phosphorylated lysine peptides. J Am Chem Soc 136:13622–13628

    Article  CAS  Google Scholar 

  70. Fujitaki JM, Steiner AW, Nichols SE, Helander ER, Lin YC, Smith RA (1980) A simple preparation of N-phosphorylated lysine and arginine. Prep Biochem 10:205–213

    CAS  Google Scholar 

  71. Bertran-Vicente J, Schumann M, Schmieder P, Krause E, Hackenberger CPR (2015) Direct access to site-specifically phosphorylated-lysine peptides from a solid-support. Org Biomol Chem 13:6839–6843

    Article  CAS  Google Scholar 

  72. Pas HH, Robillard GT (1988) S-Phosphocysteine and phosphohistidine are intermediates in the phosphoenolpyruvate-dependent mannitol transport catalyzed by Escherichia coli EIImtl. Biochemistry 27:5835–5839

    Article  CAS  Google Scholar 

  73. Cho H, Krishnaraj R, Kitas E, Bannwarth W, Walsh CT, Anderson KS (1992) Isolation and structural elucidation of a novel phosphocysteine intermediate in the LAR protein tyrosine phosphatase enzymic pathway. J Am Chem Soc 114:7296–7298

    Article  CAS  Google Scholar 

  74. Brandão TAS, Hengge AC, Johnson SJ (2010) Insights into the reaction of protein-tyrosine phosphatase 1B: crystal structures for transition state analogs of both catalytic steps. J Biol Chem 285:15874–15883

    Article  Google Scholar 

  75. Asthagiri D, Liu T, Noodleman L, Van Etten RL, Bashford D (2004) On the role of the conserved aspartate in the hydrolysis of the phosphocysteine intermediate of the low molecular weight tyrosine phosphatase. J Am Chem Soc 126:12677–12684. doi:10.1021/JA048638O

  76. Pas HH, Meyer GH, Kruizinga WH, Tamminga KS, van Weeghel RP, Robillard GT (1991) 31phospho-NMR demonstration of phosphocysteine as a catalytic intermediate on the Escherichia coli phosphotransferase system EIIMtl. J Biol Chem 266:6690–6692

    CAS  Google Scholar 

  77. Meins M, Jenö P, Müller D, Richter WJ, Rosenbusch JP, Erni B (1993) Cysteine phosphorylation of the glucose transporter of Escherichia coli. J Biol Chem 268:11604–11609

    CAS  Google Scholar 

  78. Sun F, Ding Y, Ji Q, Liang Z, Deng X, Wong CCL, Yi C, Zhang L, Xie S, Alvarez S, Hicks LM, Luo C, Jiang H, Lan L, He C (2012) Protein cysteine phosphorylation of SarA/MgrA family transcriptional regulators mediates bacterial virulence and antibiotic resistance. Proc Natl Acad Sci USA 109:15461–15466

    Article  CAS  Google Scholar 

  79. Buchowiecka AK (2014) Puzzling over protein cysteine phosphorylation—assessment of proteomic tools for S-phosphorylation profiling. Analyst 139:4118–4123

    Article  CAS  Google Scholar 

  80. Chalker JM, Lercher L, Rose NR, Schofield CJ, Davis BG (2012) Conversion of cysteine into dehydroalanine enables access to synthetic histones bearing diverse post-translational modifications. Angew Chemie Int Ed 51:1835–1839

    Article  CAS  Google Scholar 

  81. Chooi KP, Galan SRG, Raj R, McCullagh JSO, Mohammed S, Jones LH, Davis BG (2014) Synthetic phosphorylation of p38# recapitulates protein kinase activity. J Am Chem Soc 136:1698–1701

    Article  CAS  Google Scholar 

  82. Rowan FC, Richards M, Bibby RA, Thompson A, Bayliss R, Blagg J (2013) Insights into aurora-a kinase activation using unnatural amino acids incorporated by chemical modification. ACS Chem Biol 8:2184–2191

    Article  CAS  Google Scholar 

  83. Åkerfeldt S, Willman N-E, Berggren B, Thomelius H, Westin G (1960) Cysteamine S-phosphoric acid. Acta Chem Scand 14:1980–1984

    Article  Google Scholar 

  84. Åkerfeldt S, Hasselquist H, Prange I, Dam H, Sjöberg B, Toft J (1961) Further studies on S-substituted phosphorothioic acids. Mixed lithiumsodium salts of S-(1-carboxyethyl) phosphorothioic acid and S-(2-carboxyethyl) phosphorothioic acid. Acta Chem Scand 15:575–582

    Article  Google Scholar 

  85. Åkerfeldt S, Weidler A-M, Mandell L, Kvande PC, Meisingseth E (1963) Further studies on S-substituted phosphorothioic acids. III. Rates of hydrolysis and dissociation constants. Acta Chem Scand 17:319–328

    Article  Google Scholar 

  86. Swaney DL, McAlister GC, Wirtala M, Schwartz JC, Syka JEP, Coon JJ (2007) Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors. Anal Chem 79:477–485

    Article  CAS  Google Scholar 

  87. Bertran-Vicente J, Penkert M, Nieto-Garcia O, Jeckelmann J-M, Schmieder P, Krause E, Hackenberger CPR (2016) Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides. Nat Commun 7:12703

    Article  CAS  Google Scholar 

  88. Ruman T, Długopolska K, Jurkiewicz A, Rut D, Fraczyk T, Cieśla J, Leś A, Szewczuk Z, Rode W (2010) Thiophosphorylation of free amino acids and enzyme protein by thiophosphoramidate ions. Bioorg Chem 38:74–80

    Article  CAS  Google Scholar 

  89. Bernardes GJL, Chalker JM, Errey JC, Davis BG (2008) Facile conversion of cysteine and alkyl cysteines to dehydroalanine on protein surfaces: versatile and switchable access to functionalized proteins. J Am Chem Soc 130:5052–5053

    Article  CAS  Google Scholar 

  90. Chalker JM, Gunnoo SB, Boutureira O, Gerstberger SC, Fernández-González M, Bernardes GJL, Griffin L, Hailu H, Schofield CJ, Davis BG (2011) Methods for converting cysteine to dehydroalanine on peptides and proteins. Chem Sci 2:1666

    Article  CAS  Google Scholar 

  91. Chen Z, Cole PA (2015) Synthetic approaches to protein phosphorylation. Curr Opin Chem Biol 28:115–122

    Article  CAS  Google Scholar 

  92. Ridder IS, Dijkstra BW (1999) Identification of the Mg2+-binding site in the P-type ATPase and phosphatase members of the HAD (haloacid dehalogenase) superfamily by structural similarity to the response regulator protein CheY. Biochem J 339:223–226

    Article  CAS  Google Scholar 

  93. Allen KN, Dunaway-Mariano D (2004) Phosphoryl group transfer: evolution of a catalytic scaffold. Trends Biochem Sci 29:495–503

    Article  CAS  Google Scholar 

  94. Lee SY, Cho HS, Pelton JG, Yan D, Henderson RK, King DS, Huang L, Kustu S, Berry EA, Wemmer DE (2001) Crystal structure of an activated response regulator bound to its target. Nat Struct Biol 8:52–56

    Article  CAS  Google Scholar 

  95. Lee SY, Cho HS, Pelton JG, Yan D, Berry EA, Wemmer DE (2001) Crystal structure of activated CheY. Comparison with other activated receiver domains. J Biol Chem 276:16425–16431

    Article  CAS  Google Scholar 

  96. Zhao R, Collins EJ, Bourret RB, Silversmith RE (2002) Structure and catalytic mechanism of the E. coli chemotaxis phosphatase CheZ. Nat Struct Biol 9:570–575

    CAS  Google Scholar 

  97. Ibrahim IM, Puthiyaveetil S, Allen JF (2016) A two-component regulatory system in transcriptional control of photosystem stoichiometry: redox-dependent and sodium ion-dependent phosphoryl transfer from cyanobacterial histidine kinase Hik2 to response regulators Rre1 and RppA. Front Plant Sci 7:137

    Article  Google Scholar 

  98. Trumbore MW, Wang RH, Enkemann SA, Berger SL (1997) Prothymosin alpha in vivo contains phosphorylated glutamic acid residues. J Biol Chem 272:26394–26404

    Article  CAS  Google Scholar 

  99. Wang RH, Tao L, Trumbore MW, Berger SL (1997) Turnover of the acyl phosphates of human and murine prothymosin alpha in vivo. J Biol Chem 272:26405–26412

    Article  CAS  Google Scholar 

  100. Tao L, Wang RH, Enkemann SA, Trumbore MW, Berger SL (1999) Metabolic regulation of protein-bound glutamyl phosphates: insights into the function of prothymosin alpha. J Cell Physiol 178:154–163

    Article  CAS  Google Scholar 

  101. Koshland DE (1952) Effect of catalysts on the hydrolysis of acetyl phosphate. nucleophilic displacement mechanisms in enzymatic reactions. J Am Chem Soc 74:2286–2292

    Article  CAS  Google Scholar 

  102. Purich DL (2002) Use of sodium borohydride to detect acyl-phosphate linkages in enzyme reactions. Methods Enzymol 354:168–177

    Article  CAS  Google Scholar 

  103. Andersson J, Barth A (2006) FTIR studies on the bond properties of the aspartyl phosphate moiety of the Ca2+-ATPase. Biopolymers 82:353–357

    Article  CAS  Google Scholar 

  104. Schlemmer H, Sontheimer GM, Kalbitzer HR (1988) 31P nuclear magnetic resonance spectroscopy of the phosphorylated tetrapeptide Gly–Gly–Asp–Ala. Magn Reson Chem 26:260–263

    Article  CAS  Google Scholar 

  105. Platzer G, Okon M, McIntosh LP (2014) pH-dependent random coil 1H, 13C, and 15 N chemical shifts of the ionizable amino acids: a guide for protein pKa measurements. J Biomol NMR 60:109–129

    Article  CAS  Google Scholar 

  106. Black S, Wright NG (1953) Enzymatic reduction of β-aspartylphosphate to homoserine. J Am Chem Soc 75:5766

    Article  CAS  Google Scholar 

  107. Wright G, Black S, Wright NG (1955) b-Aspartokinase and b-aspartyl phosphate. J Biol Chem 213:27–38

    Google Scholar 

  108. Katchalsky A, Paecht M (1954) Phosphate anhydrides of amino acids. J Am Chem Soc 76:6042–6044

    Article  CAS  Google Scholar 

  109. Saxl RL, Anand GS, Stock AM (2001) Synthesis and biochemical characterization of a phosphorylated analogue of the response regulator CheB. Biochemistry 40:12896–12903

    Article  CAS  Google Scholar 

  110. Stewart RC (1993) Activating and inhibitory mutations in the regulatory domain of CheB, the methylesterase in bacterial chemotaxis. J Biol Chem 268:1921–1930

    CAS  Google Scholar 

  111. Berlicki Ł (2008) Inhibitors of glutamine synthetase and their potential application in medicine. Mini Rev Med Chem 8:869–878

    Article  CAS  Google Scholar 

  112. Colquhoun A, Newsholme E (1997) Aspects of glutamine metabolism in human tumour cells. IUBMB Life 41:583–596

    Article  CAS  Google Scholar 

  113. Saiardi A, Bhandari R, Resnick AC, Snowman AM, Snyder SH (2004) Phosphorylation of proteins by inositol pyrophosphates. Science 306:2101–2105

    Article  CAS  Google Scholar 

  114. Chakraborty A, Koldobskiy MA, Bello NT, Maxwell M, Potter JJ, Juluri KR, Maag D, Kim S, Huang AS, Dailey MJ, Saleh M, Snowman AM, Moran TH, Mezey E, Snyder SH (2010) Inositol pyrophosphates inhibit akt signaling, thereby regulating insulin sensitivity and weight gain. Cell 143:897–910

    Article  CAS  Google Scholar 

  115. Thota SG, Unnikannan CP, Thampatty SR, Manorama R, Bhandari R (2015) Inositol pyrophosphates regulate RNA polymerase I-mediated rRNA transcription in Saccharomyces cerevisiae. Biochem J 466:105–114

    Article  CAS  Google Scholar 

  116. Voglmaier SM, Bembenek ME, Kaplin AI, Dormán G, Olszewski JD, Prestwich GD, Snyder SH (1996) Purified inositol hexakisphosphate kinase is an ATP synthase: diphosphoinositol pentakisphosphate as a high-energy phosphate donor. Proc Natl Acad Sci USA 93:4305–4310

    Article  CAS  Google Scholar 

  117. Brown NW, Marmelstein AM, Fiedler D (2016) Chemical tools for interrogating inositol pyrophosphate structure and function. Chem Soc Rev 45:6311–6326

    Article  CAS  Google Scholar 

  118. Shears SB (2015) Inositol pyrophosphates: why so many phosphates? Adv Biol Regul 57:203–216

    Article  CAS  Google Scholar 

  119. Marmelstein AM, Yates LM, Conway JH, Fiedler D (2014) Chemical pyrophosphorylation of functionally diverse peptides. J Am Chem Soc 136:108–111

    Article  CAS  Google Scholar 

  120. Yates LM, Fiedler D (2015) Establishing the stability and reversibility of protein pyrophosphorylation with synthetic peptides. ChemBioChem 16:415–423

    Article  CAS  Google Scholar 

  121. Conway JH, Fiedler D (2015) An affinity reagent for the recognition of pyrophosphorylated peptides. Angew Chemie Int Ed 54:3941–3945

    Article  CAS  Google Scholar 

  122. Williams FJ, Fiedler D (2015) A fluorescent sensor and gel stain for detection of pyrophosphorylated proteins. ACS Chem Biol 10:1958–1963

    Article  CAS  Google Scholar 

  123. Yates LM, Fiedler D (2016) A stable pyrophosphoserine analog for incorporation into peptides and proteins. ACS Chem Biol 11:1066–1073

    Article  CAS  Google Scholar 

  124. Kornberg A, Rao NN, Ault-riché D (1999) Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 68:89–125

    Article  CAS  Google Scholar 

  125. Gray MJ, Wholey WY, Wagner NO, Cremers CM, Mueller-Schickert A, Hock NT, Krieger AG, Smith EM, Bender RA, Bardwell JCA, Jakob U (2014) Polyphosphate is a primordial chaperone. Mol Cell 53:689–699

    Article  CAS  Google Scholar 

  126. Holmström KM, Marina N, Baev AY, Wood NW, Gourine AV, Abramov AY (2013) Signalling properties of inorganic polyphosphate in the mammalian brain. Nat Commun 4:1362

    Article  CAS  Google Scholar 

  127. Cremers CM, Knoefler D, Gates S, Galvan V, Southworth DR, Jakob U, Cremers CM, Knoefler D, Gates S, Martin N, Dahl J, Lempart J, Xie L, Chapman MR, Galvan V, Southworth DR, Jakob U (2016) Polyphosphate: a conserved modifier of amyloidogenic processes. Mol Cell 63:1–13

    Article  CAS  Google Scholar 

  128. Wild R, Gerasimaite R, Jung J-Y, Truffault V, Pavlovic I, Schmidt A, Saiardi A, Jessen HJ, Poirier Y, Hothorn M, Mayer A (2016) Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 352:986–990

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothea Fiedler.

Additional information

A. M. Marmelstein and J. Moreno contributed equally.

This article is part of the Topical Collection “Phosphate Labeling and Sensing in Chemical Biology”; edited by Henning Jessen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marmelstein, A.M., Moreno, J. & Fiedler, D. Chemical Approaches to Studying Labile Amino Acid Phosphorylation. Top Curr Chem (Z) 375, 22 (2017). https://doi.org/10.1007/s41061-017-0111-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-017-0111-1

Keywords

Navigation