Skip to main content
Log in

Aggregation-Induced Emission: From Small Molecules to Polymers—Historical Background, Mechanisms and Photophysics

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

The enhancement of photoluminescence through formation of molecular aggregates in organic oligomers and conjugated organic polymers is reviewed. A historical contextualization of aggregation-induced emission (AIE) phenomena is presented. This includes the loose bolt or free rotor effect and J-aggregation phenomena, and discusses their characteristic features, including structures and mechanisms. The basis of both effects is examined in key molecules, with a particular emphasis on the AIE effect occurring in conjugated organic polymers with a polythiophene (PT) skeleton with triphenylethylene (TPE) units. Rigidification of the excited state structure is one of the defining conditions required to obtain AIE, and thus, by changing from a flexible ground state to rigid (quinoidal-like) structures, oligo and PTs are among the most promising emerging molecules alongside with the more extensively used TPE derivatives. Molecular structures moving away from the domination of aggregation-caused quenching to AIE are presented. Future perspectives for the rational design of AIEgen structures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Scheme 4
Fig. 3

Adapted from reference [124], with permission from RSC, Copyright 2019

Fig. 4

Adapted from reference [125], with permission from Elsevier, Copyright 2020

Fig. 5
Fig. 6

Adapted from Refs. [101] and [106], with permission from Wiley, Copyright 2020

Fig. 7

Adapted from reference [142] with permission from ACS, Copyright 2018

Fig. 8

Adapted from reference [142] with permission from ACS, Copyright 2018

Fig. 9

Adapted from reference [98] with permission from RSC, Copyright 2020

Fig. 10

Adapted from reference [98] with permission from RSC, Copyright 2020

Fig. 11

Adapted from reference [153], with permission from ACS, Copyright 2020

Similar content being viewed by others

References

  1. Luo J, Xie Z, Lam JW, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun 18:1740–1741. https://doi.org/10.1039/b105159h

    Article  Google Scholar 

  2. Birks JB (1970) Photophysics of aromatic molecules. Wiley, London

    Google Scholar 

  3. Tang BZ, Zhan X, Yu G, Sze Lee PP, Liu Y, Zhu D (2001) Efficient blue emission from siloles. J Mat Chem 11(12):2974–2978. https://doi.org/10.1039/b102221k

    Article  CAS  Google Scholar 

  4. Jenekhe SA, Chen XL (2000) Supramolecular photophysics of self-assembled block copolymers containing luminescent conjugated polymers. J Phys Chem B 104(27):6332–6335. https://doi.org/10.1021/jp000896u

    Article  CAS  Google Scholar 

  5. Pant DD, Bhagchandani CL, Pant KC, Verma SP (1971) Aggregation in xanthene dyes, exciton emission and phosphorescence enhancement. Chem Phys Lett 9(6):546–547. https://doi.org/10.1016/0009-2614(71)85121-7

    Article  CAS  Google Scholar 

  6. Winnik FM (1993) Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media. Chem Rev 93(2):587–614. https://doi.org/10.1021/cr00018a001

    Article  CAS  Google Scholar 

  7. Kitamura T, Takahashi Y, Yamanaka T, Uchida K (1991) Luminescence associated with the molecular aggregation of hydrocarbons doped in amorphous silica glasses. J Lumin 48–49:373–376. https://doi.org/10.1016/0022-2313(91)90141-h

    Article  Google Scholar 

  8. Rudalevige T, Francis AH, Zand R (1998) Spectroscopic studies of fullerene aggregates. J Phys Chem A 102(48):9797–9802. https://doi.org/10.1021/jp9832591

    Article  CAS  Google Scholar 

  9. Carter PW, DiMagno SG, Porter JD, Streitwieser A (1993) pi-Stacking and aggregation of pyridinium-substituted indolizin. J Phys Chem 97(5):1085–1096. https://doi.org/10.1021/j100107a017

    Article  CAS  Google Scholar 

  10. Xu W, Guo H, Akins DL (2001) Aggregation and exciton emission of a cyanine dye encapsulated within mesoporous MCM-41. J Phys Chem B 105(32):7686–7689. https://doi.org/10.1021/jp004154c

    Article  CAS  Google Scholar 

  11. Möbius D (1995) Scheibe aggregates. Adv Mater 7(5):437–444. https://doi.org/10.1002/adma.19950070503

    Article  Google Scholar 

  12. Scheibe G (1937) Über die Veränderlichkeit der Absorptionsspektren in Lösungen und die Nebenvalenzen als ihre Ursache. Angew Chem-Ger Edit 50(11):212–219. https://doi.org/10.1002/ange.19370501103

    Article  CAS  Google Scholar 

  13. Jelley EE (1936) Spectral absorption and fluorescence of dyes in the molecular state. Nature 138(3502):1009–1010. https://doi.org/10.1038/1381009a0

    Article  CAS  Google Scholar 

  14. Jelley EE (1937) Molecular, nematic and crystal states of I: I-diethyl–cyanine chloride. Nature 139(3519):631–631. https://doi.org/10.1038/139631b0

    Article  CAS  Google Scholar 

  15. Wurthner F, Kaiser TE, Saha-Moller CR (2011) J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials. Angew Chem Int Ed Engl 50(15):3376–3410. https://doi.org/10.1002/anie.201002307

    Article  CAS  PubMed  Google Scholar 

  16. Kasha M, Rawls HR, El-Bayoumi MA (1965) The exciton model in molecular spectroscopy. Pure Appl Chem 11(3–4):371–392. https://doi.org/10.1351/pac196511030371

    Article  CAS  Google Scholar 

  17. Brixner T, Hildner R, Köhler J, Lambert C, Würthner F (2017) Exciton transport in molecular aggregates—from natural antennas to synthetic chromophore systems. Adv Energy Mater 7:16. https://doi.org/10.1002/aenm.201700236

    Article  CAS  Google Scholar 

  18. Kasha M (1976) Molecular Excitons in Small Aggregates. In: Di Bartolo B, Pacheco D, Goldberg V (eds) Spectroscopy of the excited state, vol 12, vol NATO Advanced Study Institutes Series (Series B: Physics). Springer, Boston. https://doi.org/10.1007/978-1-4684-2793-6_12

    Chapter  Google Scholar 

  19. Deshmukh AP, Koppel D, Chuang C, Cadena DM, Cao J, Caram JR (2019) Design principles for two-dimensional molecular aggregates using Kasha’s Model: tunable photophysics in near and short-wave infrared. J Phys Chem C 123(30):18702–18710. https://doi.org/10.1021/acs.jpcc.9b05060

    Article  CAS  Google Scholar 

  20. Oelkrug D, Tompert A, Egelhaaf H-J, Hanack M, Steinhuber E, Hohloch M, Meier H, Stalmach U (1996) Towards highly luminescent phenylene vinylene films. Synth Methods 83(3):231–237. https://doi.org/10.1016/s0379-6779(96)04484-0

    Article  CAS  Google Scholar 

  21. Oelkrug D, Tompert A, Gierschner J, Egelhaaf H-J, Hanack M, Hohloch M, Steinhuber E (1998) Tuning of fluorescence in films and nanoparticles of oligophenylenevinylenes. J Phys Chem B 102(11):1902–1907. https://doi.org/10.1021/jp973225d

    Article  CAS  Google Scholar 

  22. Choi S, Bouffard J, Kim Y (2014) Aggregation-induced emission enhancement of a meso-trifluoromethyl BODIPY via J-aggregation. Chem Sci 5(2):751–755. https://doi.org/10.1039/c3sc52495g

    Article  CAS  Google Scholar 

  23. Sheng W, Zheng Y-Q, Wu Q, Chen K, Li M, Jiao L, Hao E, Wang J-Y, Pei J (2020) Synthesis, characterization, and tunable semiconducting properties of aza-BODIPY derived polycyclic aromatic dyes. Sci China Chem 63(9):1240–1245. https://doi.org/10.1007/s11426-020-9807-7

    Article  CAS  Google Scholar 

  24. Dong Y, Lam JWY, Qin A, Li Z, Sun J, Kwok HS, Tang BZ (2006) Aggregation-induced emission, vol 6333. SPIE optics + photonics. SPIE, Bellingham WA. https://doi.org/10.1117/12.679373

  25. Tong H, Dong Y, Haussler M, Lam JW, Sung HH, Williams ID, Sun J, Tang BZ (2006) Tunable aggregation-induced emission of diphenyldibenzofulvenes. Chem Commun 10:1133–1135. https://doi.org/10.1039/b515798f

    Article  CAS  Google Scholar 

  26. Dong Y, Lam JW, Qin A, Li Z, Sun J, Sung HH, Williams ID, Tang BZ (2007) Switching the light emission of (4-biphenylyl)phenyldibenzofulvene by morphological modulation: crystallization-induced emission enhancement. Chem Commun 1:40–42. https://doi.org/10.1039/b613157c

    Article  CAS  Google Scholar 

  27. Ren Y, Lam JW, Dong Y, Tang BZ, Wong KS (2005) Enhanced emission efficiency and excited state lifetime due to restricted intramolecular motion in silole aggregates. J Phys Chem B 109(3):1135–1140. https://doi.org/10.1021/jp046659z

    Article  CAS  PubMed  Google Scholar 

  28. Wurthner F (2020) Aggregation-induced emission (AIE): a historical perspective. Angew Chem Int Ed Engl 59(34):14192–14196. https://doi.org/10.1002/anie.202007525

    Article  CAS  PubMed  Google Scholar 

  29. Valeur B, Berberan-Santos MN (2012) Structural effects on fluorescence emission. In: Molecular fluorescence. Wiley, New York, pp 75–107. https://doi.org/10.1002/9783527650002.ch4

  30. Takezaki M, Hirota N, Terazima M (1996) Excited state dynamics of 9,10-diazaphenanthrene studied by the time-resolved transient grating method. J Phys Chem 100(24):10015–10020. https://doi.org/10.1021/jp9602540

    Article  CAS  Google Scholar 

  31. Tabuchi M, Momotake A, Kanna Y, Nishimura Y, Arai T (2011) Extremely efficient and long lifetime fluorescence of cis-stilbene contained in a rigid dendrimer. Photochem Photobiol Sci 10(10):1521–1523. https://doi.org/10.1039/C1PP05126A

    Article  CAS  PubMed  Google Scholar 

  32. Saltiel J, Megarity ED, Kneipp KG (1966) The mechanism of direct CIS-trans photoisomerization of the stilbenes. J Am Chem Soc 88(10):2336–2338. https://doi.org/10.1021/ja00962a057

    Article  CAS  Google Scholar 

  33. Charlton JL, Saltiel J (1977) An analysis of trans-stilbene fluorescence quantum yields and lifetimes. J Phys Chem 81(20):1940–1944. https://doi.org/10.1021/j100535a011

    Article  CAS  Google Scholar 

  34. Saltiel J, Zafiriou OC, Megarity ED, Lamola AA (1968) Tests of the singlet mechanism for cis-trans photoisomerization of the stilbenes. J Am Chem Soc 90(17):4759. https://doi.org/10.1021/ja01019a063

    Article  CAS  Google Scholar 

  35. DeBoer CD, Schlessinger RH (1968) Multiplicity of the photochemically reactive state of 1,2-diphenylcyclobutene. J Am Chem Soc 90(3):803–804. https://doi.org/10.1021/ja01005a052

    Article  CAS  Google Scholar 

  36. Valeur B (2002) Molecular fluorescence: principles and applications. Wiley, Weinheim

    Google Scholar 

  37. Tsin ATC, Pedrozo-Fernandez HA, Gallas JM, Chambers JP (1988) The fluorescence quantum yield of vitamin A2. Life Sci 43(17):1379–1384. https://doi.org/10.1016/0024-3205(88)90304-9

    Article  CAS  PubMed  Google Scholar 

  38. Schoof S, Güsten H, Von Sonntag C (1978) Fluoreszenz und Fluoreszenzlöschung von meso-substituierten Anthracenderivaten in Lösung. Berichte Bunsengesellschaft Phys Chem. 82(10):1068–1073. https://doi.org/10.1002/bbpc.19780821009

    Article  CAS  Google Scholar 

  39. Guesten H, Mintas M, Klasinc L (1980) Deactivation of the fluorescent state of 9-tert-butylanthracene. 9-tert-Butyl-9,10(Dewar anthracene). J Am Chem Soc 102(27):7936–7937. https://doi.org/10.1021/ja00547a022

    Article  CAS  Google Scholar 

  40. Jiao L, Yu C, Wang J, Briggs EA, Besley NA, Robinson D, Ruedas-Rama MJ, Orte A, Crovetto L, Talavera EM, Alvarez-Pez JM, Van der Auweraer M, Boens N (2015) Unusual spectroscopic and photophysical properties of meso-tert-butylBODIPY in comparison to related alkylated BODIPY dyes. RSC Adv 5(109):89375–89388. https://doi.org/10.1039/C5RA17419H

    Article  CAS  Google Scholar 

  41. Zhang H, Liu J, Du L, Ma C, Leung NLC, Niu Y, Qin A, Sun J, Peng Q, Sung HHY, Williams ID, Kwok RTK, Lam JWY, Wong KS, Phillips DL, Tang BZ (2019) Drawing a clear mechanistic picture for the aggregation-induced emission process. Mater Chem Front 3(6):1143–1150. https://doi.org/10.1039/C9QM00156E

    Article  CAS  Google Scholar 

  42. Dong Y, Lam JWY, Qin A, Liu J, Li Z, Tang BZ, Sun J, Kwok HS (2007) Aggregation-induced emissions of tetraphenylethene derivatives and their utilities as chemical vapor sensors and in organic light-emitting diodes. Appl Phys Lett 91:1. https://doi.org/10.1063/1.2753723

    Article  CAS  Google Scholar 

  43. Tanaka Y, Machida T, Noumi T, Sada K, Kokado K (2020) Emissive tetraphenylethylene (TPE) derivatives in a dissolved state tightly fastened by a short oligo(ethylene glycol) chain. Org Chem Front 7(18):2649–2656. https://doi.org/10.1039/d0qo00839g

    Article  CAS  Google Scholar 

  44. Stegemeyer H (1968) Luminescence of sterically hindered arylethylenes. Ber Bunsen Phys Chem 72(2):335–340. https://doi.org/10.1002/bbpc.19680720264

    Article  CAS  Google Scholar 

  45. Fischer G, Fischer E, Stegemeyer H (1973) Fluorescence and absorption spectra of sterically hindered arylethylenes in the neat glassy state. Ber Bunsen Phys Chem 77(9):685–687. https://doi.org/10.1002/bbpc.19730770907

    Article  CAS  Google Scholar 

  46. Leigh WJ, Arnold DR (1981) Merostabilization in radical ions, triplets, and biradicals. 6. The excited state behaviour of para-substituted tetraphenylethylenes. Can J Chem 59(21):3061–3075. https://doi.org/10.1139/v81-448

    Article  CAS  Google Scholar 

  47. Sharafy S, Muszkat KA (1971) Viscosity dependence of fluorescence quantum yields. J Am Chem Soc 93(17):4119–4125. https://doi.org/10.1021/ja00746a004

    Article  CAS  Google Scholar 

  48. Klingenberg HH, Lippert E, Rapp W (1973) The influence of an intramolecular relaxation process on the frequency-time behaviour or the fluorescence of tetraphenylethylene in highly viscous solutions. Chem Phys Lett 18(3):417–419. https://doi.org/10.1016/0009-2614(73)80206-4

    Article  CAS  Google Scholar 

  49. Barbara PF, Rand SD, Rentzepis PM (1981) Direct measurements of tetraphenylethylene torsional motion by picosecond spectroscopy. J Am Chem Soc 103(9):2156–2162. https://doi.org/10.1021/ja00399a003

    Article  CAS  Google Scholar 

  50. Greene BI (1981) Observation of a long-lived twisted intermediate following picosecond UV excitation of tetraphenylethylene. Chem Phys Lett 79(1):51–53. https://doi.org/10.1016/0009-2614(81)85286-4

    Article  CAS  Google Scholar 

  51. Zijlstra RWJ, van Duijnen PT, Feringa BL, Steffen T, Duppen K, Wiersma DA (1997) Excited-state dynamics of tetraphenylethylene: ultrafast stokes shift, isomerization, and charge separation. J Phys Chem A 101(51):9828–9836. https://doi.org/10.1021/jp971763k

    Article  CAS  Google Scholar 

  52. Turro NJ (1991) Modern molecular photochemistry. University Science Books, Mill Valley

    Google Scholar 

  53. Becker RS (1969) Theory and interpretation of fluorescence and phosphorescence. Wiley, New York

    Google Scholar 

  54. Xu S, Duan Y, Liu B (2020) Precise molecular design for high-performance luminogens with aggregation-induced emission. Adv Mater 32(1):e1903530. https://doi.org/10.1002/adma.201903530

    Article  CAS  PubMed  Google Scholar 

  55. Yang J, Chi Z, Zhu W, Tang BZ, Li Z (2019) Aggregation-induced emission: a coming-of-age ceremony at the age of eighteen. Sci China Chem 62(9):1090–1098. https://doi.org/10.1007/s11426-019-9512-x

    Article  CAS  Google Scholar 

  56. Hu R, Qin A, Tang BZ (2020) AIE polymers: synthesis and applications. Prog Polym Sci. https://doi.org/10.1016/j.progpolymsci.2019.101176

    Article  Google Scholar 

  57. Zhou S-Y, Wan H-B, Zhou F, Gu P-Y, Xu Q-F, Lu J-M (2019) AIEgens-lightened functional polymers: synthesis, properties and applications. Chin J Polym Sci 37(4):302–326. https://doi.org/10.1007/s10118-019-2217-0

    Article  CAS  Google Scholar 

  58. Li J, Wang J, Li H, Song N, Wang D, Tang BZ (2020) Supramolecular materials based on AIE luminogens (AIEgens): construction and applications. Chem Soc Rev 49(4):1144–1172. https://doi.org/10.1039/c9cs00495e

    Article  CAS  PubMed  Google Scholar 

  59. Pina J, Pinheiro D, Nascimento B, Pineiro M, Seixas de Melo JS (2014) The effect of polyaromatic hydrocarbons on the spectral and photophysical properties of diaryl-pyrrole derivatives: an experimental and theoretical study. Phys Chem Chem Phys 16(34):18319–18326. https://doi.org/10.1039/c4cp01797h

    Article  CAS  PubMed  Google Scholar 

  60. Chang D, Chen J, Liu Y, Huang H, Qin A, Deng GJ (2021) Metal-free synthesis and photophysical properties of 1,2,4-triarylpyrroles. J Org Chem 86:110–127 https://doi.org/10.1021/acs.joc.0c01788

  61. Chen M, Li L, Wu H, Pan L, Li S, He B, Zhang H, Sun JZ, Qin A, Tang BZ (2018) Unveiling the different emission behavior of polytriazoles constructed from pyrazine-based AIE monomers by click polymerization. ACS Appl Mater Interfaces 10(15):12181–12188. https://doi.org/10.1021/acsami.8b03178

    Article  CAS  PubMed  Google Scholar 

  62. Guo Z, Yan C, Zhu W-H (2020) High-performance quinoline-malononitrile core as a building block for the diversity-oriented synthesis of AIEgens. Angew Chem Int Ed Engl 59(25):9812–9825. https://doi.org/10.1002/anie.201913249

    Article  CAS  PubMed  Google Scholar 

  63. Qian Y, Cai MM, Xie LH, Yang GQ, Wu SK, Huang W (2011) Restriction of photoinduced twisted intramolecular charge transfer. ChemPhysChem 12(2):397–404. https://doi.org/10.1002/cphc.201000457

    Article  CAS  PubMed  Google Scholar 

  64. Zhou P, Li P, Zhao Y, Han K (2019) Restriction of flip-flop motion as a mechanism for aggregation-induced emission. J Phys Chem Lett 10(21):6929–6935. https://doi.org/10.1021/acs.jpclett.9b02922

    Article  CAS  PubMed  Google Scholar 

  65. Yin PA, Wan Q, Niu Y, Peng Q, Wang Z, Li Y, Qin A, Shuai Z, Tang BZ (2020) Theoretical and experimental investigations on the aggregation-enhanced emission from dark state: vibronic coupling effect. Adv Electron Mater 6:7. https://doi.org/10.1002/aelm.202000255

    Article  CAS  Google Scholar 

  66. Hong Y, Lam JW, Tang BZ (2009) Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun 29:4332–4353. https://doi.org/10.1039/b904665h

    Article  CAS  Google Scholar 

  67. Mei J, Hong Y, Lam JW, Qin A, Tang Y, Tang BZ (2014) Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater 26(31):5429–5479. https://doi.org/10.1002/adma.201401356

    Article  CAS  PubMed  Google Scholar 

  68. Leung NLC, Xie N, Yuan W, Liu Y, Wu Q, Peng Q, Miao Q, Lam JWY, Tang BZ (2014) Restriction of intramolecular motions: the general mechanism behind aggregation-induced emission. Chem Eur J 20(47):15349–15353. https://doi.org/10.1002/chem.201403811

    Article  CAS  PubMed  Google Scholar 

  69. Mazzucato U, Spalletti A (2009) Competition between photoisomerization and photocyclization of the cis isomers of n-styrylnaphthalenes and -phenanthrenes. J Phys Chem A 113(52):14521–14529. https://doi.org/10.1021/jp904017e

    Article  CAS  PubMed  Google Scholar 

  70. Prlj A, Doslic N, Corminboeuf C (2016) How does tetraphenylethylene relax from its excited states? Phys Chem Chem Phys 18(17):11606–11609. https://doi.org/10.1039/c5cp04546k

    Article  CAS  PubMed  Google Scholar 

  71. Gao YJ, Chang XP, Liu XY, Li QS, Cui G, Thiel W (2017) Excited-state decay paths in tetraphenylethene derivatives. J Phys Chem A 121(13):2572–2579. https://doi.org/10.1021/acs.jpca.7b00197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gao BR, Wang HY, Hao YW, Fu LM, Fang HH, Jiang Y, Wang L, Chen QD, Xia H, Pan LY, Ma YG, Sun HB (2010) Time-resolved fluorescence study of aggregation-induced emission enhancement by restriction of intramolecular charge transfer state. J Phys Chem B 114(1):128–134. https://doi.org/10.1021/jp909063d

    Article  CAS  PubMed  Google Scholar 

  73. Sasaki S, Drummen GPC, Konishi G-i (2016) Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry. J Mater Chem C 4(14):2731–2743. https://doi.org/10.1039/c5tc03933a

    Article  CAS  Google Scholar 

  74. Liu J, Zhang C, Dong J, Zhu J, Shen C, Yang G, Zhang X (2017) Endowing a triarylboron compound showing ACQ with AIE characteristics by transforming its emissive TICT state to be dark. RSC Adv 7(24):14511–14515. https://doi.org/10.1039/c7ra00426e

    Article  CAS  Google Scholar 

  75. Tseng N-W, Liu J, Ng JCY, Lam JWY, Sung HHY, Williams ID, Tang BZ (2012) Deciphering mechanism of aggregation-induced emission (AIE): Is E-Zisomerisation involved in an AIE process? Chem Sci 3(2):493–497. https://doi.org/10.1039/c1sc00690h

    Article  CAS  Google Scholar 

  76. Garg K, Ganapathi E, Rajakannu P, Ravikanth M (2015) Stereochemical modulation of emission behaviour in E/Z isomers of diphenyldipyrroethene from aggregation induced emission to crystallization induced emission. Phys Chem Chem Phys 17(29):19465–19473. https://doi.org/10.1039/c5cp02400e

    Article  CAS  PubMed  Google Scholar 

  77. Yang Z, Qin W, Leung NLC, Arseneault M, Lam JWY, Liang G, Sung HHY, Williams ID, Tang BZ (2016) A mechanistic study of AIE processes of TPE luminogens: intramolecular rotation vs configurational isomerization. J Mater Chem C 4(1):99–107. https://doi.org/10.1039/c5tc02924d

    Article  CAS  Google Scholar 

  78. Xie Y, Li Z (2019) Recent advances in the Z/E isomers of tetraphenylethene derivatives: stereoselective synthesis, AIE mechanism, photophysical properties, and application as chemical probes. Chem Asian J 14(15):2524–2541. https://doi.org/10.1002/asia.201900282

    Article  CAS  PubMed  Google Scholar 

  79. Stojanović L, Crespo-Otero R (2019) Understanding aggregation induced emission in a propeller-shaped blue emitter. ChemPhotoChem 3(9):907–915. https://doi.org/10.1002/cptc.201900075

    Article  CAS  Google Scholar 

  80. Xu Y, Wang F, Chen X, Liu Y, Zhou Z, Teng B (2019) A new strategy of design and development of aggregation-induced emission materials based on a deep insight into mechanism. J Phys Chem C 123(48):29379–29385. https://doi.org/10.1021/acs.jpcc.9b06198

    Article  CAS  Google Scholar 

  81. Suzuki S, Sasaki S, Sairi AS, Iwai R, Tang BZ, Konishi G-i (2020) Principles of aggregation-induced emission: design of deactivation pathways for advanced AIEgens and applications. Angew Chem Int Ed Engl 59(25):9856–9867. https://doi.org/10.1002/anie.202000940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kokado K, Sada K (2019) Consideration of molecular structure in the excited state to design new luminogens with aggregation-induced emission. Angew Chem Int Ed Engl 58(26):8632–8639. https://doi.org/10.1002/anie.201814462

    Article  CAS  PubMed  Google Scholar 

  83. Tu Y, Liu J, Zhang H, Peng Q, Lam JWY, Tang BZ (2019) Restriction of access to the dark state: a new mechanistic model for heteroatom-containing AIE systems. Angew Chem Int Ed Engl 58(42):14911–14914. https://doi.org/10.1002/anie.201907522

    Article  CAS  PubMed  Google Scholar 

  84. Crespo-Otero R, Li Q, Blancafort L (2019) Exploring potential energy surfaces for aggregation-induced emission—from solution to crystal. Chem Asian J 14(6):700–714. https://doi.org/10.1002/asia.201801649

    Article  CAS  PubMed  Google Scholar 

  85. Li Q, Blancafort L (2013) A conical intersection model to explain aggregation induced emission in diphenyl dibenzofulvene. Chem Commun 49(53):5966–5968. https://doi.org/10.1039/C3CC41730A

    Article  CAS  Google Scholar 

  86. Peng X-L, Ruiz-Barragan S, Li Z-S, Li Q-S, Blancafort L (2016) Restricted access to a conical intersection to explain aggregation induced emission in dimethyl tetraphenylsilole. J Mater Chem C 4(14):2802–2810. https://doi.org/10.1039/C5TC03322E

    Article  CAS  Google Scholar 

  87. Suzuki S, Maeda S, Morokuma K (2015) Exploration of quenching pathways of multiluminescent acenes using the GRRM method with the SF-TDDFT method. J Phys Chem A 119(47):11479–11487. https://doi.org/10.1021/acs.jpca.5b07682

    Article  CAS  PubMed  Google Scholar 

  88. Kokado K, Machida T, Iwasa T, Taketsugu T, Sada K (2018) Twist of C=C bond plays a crucial role in the quenching of AIE-active tetraphenylethene derivatives in solution. J Phys Chem C 122(1):245–251. https://doi.org/10.1021/acs.jpcc.7b11248

    Article  CAS  Google Scholar 

  89. Yoshii R, Nagai A, Tanaka K, Chujo Y (2013) Highly emissive boron ketoiminate derivatives as a new class of aggregation-induced emission fluorophores. Chem Eur J 19(14):4506–4512. https://doi.org/10.1002/chem.201203703

    Article  CAS  PubMed  Google Scholar 

  90. Nie H, Hu K, Cai Y, Peng Q, Zhao Z, Hu R, Chen J, Su S-J, Qin A, Tang BZ (2017) Tetraphenylfuran: aggregation-induced emission or aggregation-caused quenching? Mater Chem Front 1(6):1125–1129. https://doi.org/10.1039/C6QM00343E

    Article  CAS  Google Scholar 

  91. Baig MZK, Prusti B, Roy D, Chakravarty M (2019) Positional variation of monopyridyl-N in unsymmetrical anthracenyl pi-conjugates: difference between solution- and aggregate-state emission behavior. ACS Omega 4(3):5052–5063. https://doi.org/10.1021/acsomega.9b00046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tang Y, Tang BZ (2019) Principles and applications of aggregation-induced emission. Springer, Berlin. https://doi.org/10.1007/978-3-319-99037-8

    Book  Google Scholar 

  93. Wang Y, Liu T, Bu L, Li J, Yang C, Li X, Tao Y, Yang W (2012) Aqueous nanoaggregation-enhanced one- and two-photon fluorescence, crystalline J-aggregation-induced red shift, and amplified spontaneous emission of 9,10-bis(p-dimethylaminostyryl)anthracene. J Phys Chem C 116(29):15576–15583. https://doi.org/10.1021/jp3031094

    Article  CAS  Google Scholar 

  94. Zhou J, Chang Z, Jiang Y, He B, Du M, Lu P, Hong Y, Kwok HS, Qin A, Qiu H, Zhao Z, Tang BZ (2013) From tetraphenylethene to tetranaphthylethene: structural evolution in AIE luminogen continues. Chem Commun 49(25):2491–2493. https://doi.org/10.1039/C3CC00010A

    Article  CAS  Google Scholar 

  95. Wang J, Mei J, Hu R, Sun JZ, Qin A, Tang BZ (2012) Click synthesis, aggregation-induced emission, E/Z isomerization, self-organization, and multiple chromisms of pure stereoisomers of a tetraphenylethene-cored luminogen. J Am Chem Soc 134(24):9956–9966. https://doi.org/10.1021/ja208883h

    Article  CAS  PubMed  Google Scholar 

  96. Zhang G-F, Chen Z-Q, Aldred MP, Hu Z, Chen T, Huang Z, Meng X, Zhu M-Q (2014) Direct validation of the restriction of intramolecular rotation hypothesis via the synthesis of novel ortho-methyl substituted tetraphenylethenes and their application in cell imaging. Chem Commun 50(81):12058–12060. https://doi.org/10.1039/C4CC04241G

    Article  CAS  Google Scholar 

  97. Zhang G-F, Wang H, Aldred MP, Chen T, Chen Z-Q, Meng X, Zhu M-Q (2014) General synthetic approach toward geminal-substituted tetraarylethene fluorophores with tunable emission properties: X-ray crystallography. Aggreg Induced Emiss Piezofluorochrom Chem Mater 26(15):4433–4446. https://doi.org/10.1021/cm501414b

    Article  CAS  Google Scholar 

  98. Rodrigues ACB, Geisler IS, Klein P, Pina J, Neuhaus FJH, Dreher E, Lehmann CW, Scherf U, Seixas de Melo JS (2020) Designing highly fluorescent, arylated poly(phenylene vinylene)s of intrinsic microporosity. J Mater Chem C 8(7):2248–2257. https://doi.org/10.1039/c9tc06028f

    Article  CAS  Google Scholar 

  99. Cai Y, Du L, Samedov K, Gu X, Qi F, Sung HHY, Patrick BO, Yan Z, Jiang X, Zhang H, Lam JWY, Williams ID, Lee Phillips D, Qin A, Tang BZ (2018) Deciphering the working mechanism of aggregation-induced emission of tetraphenylethylene derivatives by ultrafast spectroscopy. Chem Sci 9(20):4662–4670. https://doi.org/10.1039/C8SC01170B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dong YQ, Lam JW, Tang BZ (2015) Mechanochromic luminescence of aggregation-induced emission luminogens. J Phys Chem Lett 6(17):3429–3436. https://doi.org/10.1021/acs.jpclett.5b01090

    Article  CAS  PubMed  Google Scholar 

  101. Duan Y, Ma H, Tian H, Liu J, Deng X, Peng Q, Dong YQ (2019) Construction of a luminogen exhibiting high contrast and multicolored emission switching through combination of a bulky conjugation core and tolyl groups. Chem Asian J 14(6):864–870. https://doi.org/10.1002/asia.201801608

    Article  CAS  PubMed  Google Scholar 

  102. Dong Y, Lam JWY, Li Z, Qin A, Tong H, Dong Y, Feng X, Tang BZ (2005) Vapochromism of hexaphenylsilole. J Inorg Organomet 15(2):287–291. https://doi.org/10.1007/s10904-005-5546-0

    Article  CAS  Google Scholar 

  103. Zheng M, Sun M, Li Y, Wang J, Bu L, Xue S, Yang W (2014) Piezofluorochromic properties of AIE-active 9,10-bis(N-alkylpheno-thiazin-3-yl-vinyl-2)anthracenes with different length of alkyl chains. Dyes Pigments 102:29–34. https://doi.org/10.1016/j.dyepig.2013.10.020

    Article  CAS  Google Scholar 

  104. Zhang G, Sun J, Xue P, Zhang Z, Gong P, Peng J, Lu R (2015) Phenothiazine modified triphenylacrylonitrile derivates: AIE and mechanochromism tuned by molecular conformation. J Mater Chem C 3(12):2925–2932. https://doi.org/10.1039/c4tc02925a

    Article  CAS  Google Scholar 

  105. Huang B, Chen WC, Li Z, Zhang J, Zhao W, Feng Y, Tang BZ, Lee CS (2018) Manipulation of molecular aggregation states to realize polymorphism, AIE, MCL, and TADF in a single molecule. Angew Chem Int Ed Engl 57(38):12473–12477. https://doi.org/10.1002/anie.201806800

    Article  CAS  PubMed  Google Scholar 

  106. Luo X, Li J, Li C, Heng L, Dong YQ, Liu Z, Bo Z, Tang BZ (2011) Reversible switching of the emission of diphenyldibenzofulvenes by thermal and mechanical stimuli. Adv Mater 23(29):3261–3265. https://doi.org/10.1002/adma.201101059

    Article  CAS  PubMed  Google Scholar 

  107. Zhao J, Chi Z, Zhang Y, Mao Z, Yang Z, Ubba E, Chi Z (2018) Recent progress in the mechanofluorochromism of cyanoethylene derivatives with aggregation-induced emission. J Mater Chem C 6(24):6327–6353. https://doi.org/10.1039/c8tc01648h

    Article  CAS  Google Scholar 

  108. Yang Z, Chi Z, Mao Z, Zhang Y, Liu S, Zhao J, Aldred MP, Chi Z (2018) Recent advances in mechano-responsive luminescence of tetraphenylethylene derivatives with aggregation-induced emission properties. Mater Chem Front 2(5):861–890. https://doi.org/10.1039/c8qm00062j

    Article  CAS  Google Scholar 

  109. Ubba E, Tao Y, Yang Z, Zhao J, Wang L, Chi Z (2018) Organic mechanoluminescence with aggregation-induced emission. Chem Asian J 13(21):3106–3121. https://doi.org/10.1002/asia.201800926

    Article  CAS  PubMed  Google Scholar 

  110. Zhao J, Chi Z, Yang Z, Mao Z, Zhang Y, Ubba E, Chi Z (2018) Recent progress in the mechanofluorochromism of distyrylanthracene derivatives with aggregation-induced emission. Mater Chem Front 2(9):1595–1608. https://doi.org/10.1039/c8qm00130h

    Article  CAS  Google Scholar 

  111. Lin Y, Chen G, Zhao L, Yuan WZ, Zhang Y, Tang BZ (2015) Diethylamino functionalized tetraphenylethenes: structural and electronic modulation of photophysical properties, implication for the CIE mechanism and application to cell imaging. J Mater Chem C 3(1):112–120. https://doi.org/10.1039/c4tc02161d

    Article  CAS  Google Scholar 

  112. Yang J, Gao X, Xie Z, Gong Y, Fang M, Peng Q, Chi Z, Li Z (2017) Elucidating the excited state of mechanoluminescence in organic luminogens with room-temperature phosphorescence. Angew Chem Int Ed Engl 56(48):15299–15303. https://doi.org/10.1002/anie.201708119

    Article  CAS  PubMed  Google Scholar 

  113. Xue P, Ding J, Chen P, Wang P, Yao B, Sun J, Sun J, Lu R (2016) Mechanical force-induced luminescence enhancement and chromism of a nonplanar D–A phenothiazine derivative. J Mater Chem C 4(23):5275–5280. https://doi.org/10.1039/c6tc01193d

    Article  CAS  Google Scholar 

  114. Ma C, Zhang X, Yang Y, Ma Z, Yang L, Wu Y, Liu H, Jia X, Wei Y (2016) Halogen effect on mechanofluorochromic properties of alkyl phenothiazinyl phenylacrylonitrile derivatives. Dyes Pigments 129:141–148. https://doi.org/10.1016/j.dyepig.2016.02.028

    Article  CAS  Google Scholar 

  115. Yang J, Qin J, Geng P, Wang J, Fang M, Li Z (2018) Molecular conformation-dependent mechanoluminescence: same mechanical stimulus but different emissive color over time. Angew Chem Int Ed Engl 57(43):14174–14178. https://doi.org/10.1002/anie.201809463

    Article  CAS  PubMed  Google Scholar 

  116. Chen Y, Xu C, Xu B, Mao Z, Li J-A, Yang Z, Peethani NR, Liu C, Shi G, Gu FL, Zhang Y, Chi Z (2019) Chirality-activated mechanoluminescence from aggregation-induced emission enantiomers with high contrast mechanochromism and force-induced delayed fluorescence. Mater Chem Front 3(9):1800–1806. https://doi.org/10.1039/c9qm00312f

    Article  CAS  Google Scholar 

  117. Massie SP (1954) The chemistry of phenothiazine. Chem Rev 54(5):797–833. https://doi.org/10.1021/cr60171a003

    Article  CAS  Google Scholar 

  118. El- Sayed MA (1968) Triplet state—its radiative and nonradiative properties. Accounts Chem Res 1(1):8–16

    Article  CAS  Google Scholar 

  119. Okazaki M, Takeda Y, Data P, Pander P, Higginbotham H, Monkman AP, Minakata S (2017) Thermally activated delayed fluorescent phenothiazine–dibenzo[a, j]phenazine–phenothiazine triads exhibiting tricolor-changing mechanochromic luminescence. Chem Sci 8(4):2677–2686. https://doi.org/10.1039/c6sc04863c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nobuyasu RS, Ward JS, Gibson J, Laidlaw BA, Ren Z, Data P, Batsanov AS, Penfold TJ, Bryce MR, Dias FB (2019) The influence of molecular geometry on the efficiency of thermally activated delayed fluorescence. J Mater Chem C 7(22):6672–6684. https://doi.org/10.1039/c9tc00720b

    Article  CAS  Google Scholar 

  121. Wagner E, Filipek S, Kalinowski MK (1988) Visible absorption spectra of the phenothiazine radical cation and its 10-substituted derivatives. Monatsh Chem 119(8–9):929–932

    Article  CAS  Google Scholar 

  122. Huang L, Wen X, Liu J, Chen M, Ma Z, Jia X (2019) An AIE molecule featuring changeable triplet emission between phosphorescence and delayed fluorescence by an external force. Mater Chem Front 3(10):2151–2156. https://doi.org/10.1039/c9qm00509a

    Article  CAS  Google Scholar 

  123. Shi R, Chen H, Qi Y, Huang W, Yin G, Wang R (2019) From aggregation-induced to solution emission: a new strategy for designing ratiometric fluorescent probes and its application for in vivo HClO detection. Analyst 144(5):1696–1703. https://doi.org/10.1039/c8an01950a

    Article  CAS  PubMed  Google Scholar 

  124. Gong J, Han J, Liu Q, Ren X, Wei P, Yang L, Zhang Y, Liu J, Dong Y, Wang Y, Song X, Tang BZ (2019) An ideal platform of light-emitting materials from phenothiazine: facile preparation, tunable red/NIR fluorescence, bent geometry-promoted AIE behaviour and selective lipid-droplet (LD) tracking ability. J Mater Chem C 7(14):4185–4190. https://doi.org/10.1039/c9tc00143c

    Article  CAS  Google Scholar 

  125. Rodrigues ACB, Pina J, Seixas de Melo JS (2020) Structure-relation properties of N-substituted phenothiazines in solution and solid state: Photophysical, photostability and aggregation-induced emission studies. J Mol Liq 317:113966. https://doi.org/10.1016/j.molliq.2020.113966

  126. Jia XR, Yu HJ, Chen J, Gao WJ, Fang JK, Qin YS, Hu XK, Shao G (2018) Stimuli-responsive properties of aggregation-induced-emission compounds containing a 9,10-distyrylanthracene moiety. Chem Eur J 24(71):19053–19059. https://doi.org/10.1002/chem.201804315

    Article  CAS  PubMed  Google Scholar 

  127. Freudenberg J, Rominger F, Bunz UH (2015) New aggregation-induced emitters: tetraphenyldistyrylbenzenes. Chem Eur J 21(47):16749–16753. https://doi.org/10.1002/chem.201502877

    Article  CAS  PubMed  Google Scholar 

  128. Zhang J, Ma S, Fang H, Xu B, Sun H, Chan I, Tian W (2017) Insights into the origin of aggregation enhanced emission of 9,10-distyrylanthracene derivatives. Mater Chem Front 1(7):1422–1429. https://doi.org/10.1039/C7QM00032D

    Article  CAS  Google Scholar 

  129. Tong H, Dong Y, Hong Y, Häussler M, Lam JWY, Sung HHY, Yu X, Sun J, Williams ID, Kwok HS, Tang BZ (2007) Aggregation-induced emission: effects of molecular structure, solid-state conformation, and morphological packing arrangement on light-emitting behaviors of diphenyldibenzofulvene derivatives. J Phys Chem C 111(5):2287–2294. https://doi.org/10.1021/jp0630828

    Article  CAS  Google Scholar 

  130. Gong Y, Tan Y, Liu J, Lu P, Feng C, Yuan WZ, Lu Y, Sun JZ, He G, Zhang Y (2013) Twisted D-pi-A solid emitters: efficient emission and high contrast mechanochromism. Chem Commun 49(38):4009–4011. https://doi.org/10.1039/c3cc39243k

    Article  CAS  Google Scholar 

  131. Yuan WZ, Gong Y, Chen S, Shen XY, Lam JWY, Lu P, Lu Y, Wang Z, Hu R, Xie N, Kwok HS, Zhang Y, Sun JZ, Tang BZ (2012) Efficient solid emitters with aggregation-induced emission and intramolecular charge transfer characteristics: molecular design, synthesis, photophysical behaviors, and OLED application. Chem Mater 24(8):1518–1528. https://doi.org/10.1021/cm300416y

    Article  CAS  Google Scholar 

  132. Yuan WZ, Tan Y, Gong Y, Lu P, Lam JW, Shen XY, Feng C, Sung HH, Lu Y, Williams ID, Sun JZ, Zhang Y, Tang BZ (2013) Synergy between twisted conformation and effective intermolecular interactions: strategy for efficient mechanochromic luminogens with high contrast. Adv Mater 25(20):2837–2843. https://doi.org/10.1002/adma.201205043

    Article  CAS  PubMed  Google Scholar 

  133. Dong W, Pina J, Pan Y, Preis E, Seixas de Melo JS, Scherf U (2015) Polycarbazoles and polytriphenylamines showing aggregation-induced emission (AIE) and intramolecular charge transfer (ICT) behavior for the optical detection of nitroaromatic compounds. Polymer 76:173–181. https://doi.org/10.1016/j.polymer.2015.08.064

    Article  CAS  Google Scholar 

  134. Su X, Gao Q, Wang D, Han T, Tang BZ (2020) One-step multicomponent polymerizations for the synthesis of multifunctional AIE polymers. Macromol Rapid Commun. https://doi.org/10.1002/marc.202000471

    Article  PubMed  Google Scholar 

  135. Liu J, Lam JWY, Tang BZ (2009) Aggregation-induced emission of silole molecules and polymers: fundamental and applications. J Inorg Organomet 19(3):249. https://doi.org/10.1007/s10904-009-9282-8

    Article  CAS  Google Scholar 

  136. Qin A, Lam JWY, Tang BZ (2012) Luminogenic polymers with aggregation-induced emission characteristics. Prog Polym Sci 37(1):182–209. https://doi.org/10.1016/j.progpolymsci.2011.08.002

    Article  CAS  Google Scholar 

  137. Li Y, Liu S, Han T, Zhang H, Chuah C, Kwok RTK, Lam JWY, Tang BZ (2019) Sparks fly when AIE meets with polymers. Mater Chem Front 3(11):2207–2220. https://doi.org/10.1039/c9qm00404a

    Article  CAS  Google Scholar 

  138. Qiu Z, Liu X, Lam JWY, Tang BZ (2019) The marriage of aggregation-induced emission with polymer science. Macromol Rapid Commun 40(1):e1800568. https://doi.org/10.1002/marc.201800568

    Article  CAS  PubMed  Google Scholar 

  139. Pucci A (2019) Mechanochromic fluorescent polymers with aggregation-induced emission features. Sensors 19:22. https://doi.org/10.3390/s19224969

    Article  CAS  Google Scholar 

  140. Zhan R, Pan Y, Manghnani PN, Liu B (2017) AIE polymers: synthesis, properties, and biological applications. Macromol Biosci 17:5. https://doi.org/10.1002/mabi.201600433

    Article  CAS  Google Scholar 

  141. Zhou H, Chua MH, Tang BZ, Xu J (2019) Aggregation-induced emission (AIE)-active polymers for explosive detection. Polym Chem 10(28):3822–3840. https://doi.org/10.1039/c9py00322c

    Article  CAS  Google Scholar 

  142. Rodrigues ACB, Pina J, Dong W, Forster M, Scherf U, Seixas de Melo JS (2018) Aggregation-induced emission in phenothiazine–TPE and −TPAN polymers. Macromolecules 51(21):8501–8512. https://doi.org/10.1021/acs.macromol.8b01758

    Article  CAS  Google Scholar 

  143. Gao B-R, Wang H-Y, Yang Z-Y, Wang H, Wang L, Jiang Y, Hao Y-W, Chen Q-D, Li Y-P, Ma Y-G, Sun H-B (2011) Comparative time-resolved study of two aggregation-induced emissive molecules. J Phys Chem C 115(32):16150–16154. https://doi.org/10.1021/jp2027753

    Article  CAS  Google Scholar 

  144. Hoyt JM, Frank CE, Koch K (1967) Polymerization of bis(α-​Haloalkyl) aromatic compounds

  145. Baysec S, Preis E, Allard S, Scherf U (2016) Very high solid state photoluminescence quantum yields of poly(tetraphenylethylene) derivatives. Macromol Rapid Commun 37(22):1802–1806. https://doi.org/10.1002/marc.201600485

    Article  CAS  PubMed  Google Scholar 

  146. Dalapati S, Gu C, Jiang D (2016) Luminescent porous polymers based on aggregation-induced mechanism: design. Synth Funct Small 12(47):6513–6527. https://doi.org/10.1002/smll.201602427

    Article  CAS  Google Scholar 

  147. Jansen JC, Esposito E, Fuoco A, Carta M (2019) Microporous organic polymers: synthesis, characterization, and applications. Polymers (Basel) 11:5. https://doi.org/10.3390/polym11050844

    Article  CAS  Google Scholar 

  148. Patra A, Scherf U (2012) Fluorescent microporous organic polymers: potential testbed for optical applications. Chem Eur J 18(33):10074–10080. https://doi.org/10.1002/chem.201200804

    Article  CAS  PubMed  Google Scholar 

  149. Palma-Cando A, Woitassek D, Brunklaus G, Scherf U (2017) Luminescent tetraphenylethene-cored, carbazole- and thiophene-based microporous polymer films for the chemosensing of nitroaromatic analytes. Mater Chem Front 1(6):1118–1124. https://doi.org/10.1039/c6qm00281a

    Article  CAS  Google Scholar 

  150. Pina J, Seixas de Melo J, Burrows HD, Bilge A, Farrell T, Forster M, Scherf U (2006) Spectral and photophysical studies on cruciform oligothiophenes in solution and the solid state. J Phys Chem B 110(31):15100–15106. https://doi.org/10.1021/jp060707t

    Article  CAS  PubMed  Google Scholar 

  151. De Nisi F, Francischello R, Battisti A, Panniello A, Fanizza E, Striccoli M, Gu X, Leung NLC, Tang BZ, Pucci A (2017) Red-emitting AIEgen for luminescent solar concentrators. Mater Chem Front 1(7):1406–1412. https://doi.org/10.1039/c7qm00008a

    Article  CAS  Google Scholar 

  152. Zhang Z, Liao M, Lou H, Hu Y, Sun X, Peng H (2018) Conjugated polymers for flexible energy harvesting and storage. Adv Mater 30(13):e1704261. https://doi.org/10.1002/adma.201704261

    Article  CAS  PubMed  Google Scholar 

  153. Pina J, Rodrigues ACB, Alnady M, Dong W, Scherf U, Seixas de Melo JS (2020) Restricted aggregate formation on tetraphenylethene-substituted polythiophenes. J Phys Chem C 124(25):13956–13965. https://doi.org/10.1021/acs.jpcc.9b10908

    Article  CAS  Google Scholar 

  154. Raithel D, Baderschneider S, de Queiroz TB, Lohwasser R, Köhler J, Thelakkat M, Kümmel S, Hildner R (2016) Emitting species of poly(3-hexylthiophene): from single. Isolated Chains Bulk Macromol 49(24):9553–9560. https://doi.org/10.1021/acs.macromol.6b02077

    Article  CAS  Google Scholar 

  155. Becker RS, Seixas de Melo JS, Maçanita AL, Elisei F (1996) Comprehensive evaluation of the absorption, photophysical, energy transfer, structural, and theoretical properties of α-oligothiophenes with one to seven rings. J Phys Chem 100(48):18683–18695. https://doi.org/10.1021/jp960852e

    Article  CAS  Google Scholar 

  156. Pina J, Burrows HD, Becker RS, Dias FB, Maçanita AL, Seixas de Melo JS (2006) Photophysical Studies of α, ω-dicyano-oligothiophenes NC(C4H2S)nCN (n = 1–6). J Phys Chem B 110(13):6499–6505. https://doi.org/10.1021/jp055455v

    Article  CAS  PubMed  Google Scholar 

  157. Pina J, Seixas de Melo JS, Burrows HD, Maçanita AL, Galbrecht F, Bünnagel T, Scherf U (2009) Alternating binaphthyl−thiophene copolymers: synthesis, spectroscopy, and photophysics and their relevance to the question of energy migration versus conformational relaxation. Macromolecules 42(5):1710–1719. https://doi.org/10.1021/ma802395c

    Article  CAS  Google Scholar 

  158. Pina J, Eckert A, Scherf U, Galvão AM, Seixas de Melo JS (2018) Cyclopentadithiophene derivatives: a step towards an understanding of thiophene copolymer excited state deactivation pathways. Mater Chem Front 2(1):149–156. https://doi.org/10.1039/C7QM00440K

    Article  CAS  Google Scholar 

  159. Clark J, Silva C, Friend RH, Spano FC (2007) Role of intermolecular coupling in the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene. Phys Rev Lett 98(20):206406. https://doi.org/10.1103/PhysRevLett.98.206406

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from Project “Hylight” (no. 031625) 02/SAICT/2017, PTDC/QUI-QFI/31625/2017, which is funded by the Portuguese Science Foundation (Fundação para Ciência e Tecnologia, FCT) and COMPETE Centro 2020. We also acknowledge funding by Fundo Europeu de Desenvolvimento Regional (FEDER) through COMPETE and project ROTEIRO/0152/2013. The Coimbra Chemistry Centre (CQC) is supported through projects UIDB/00313/2020 and UIDP/00313/2020, co-funded by FCT and COMPETE 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sérgio Seixas de Melo.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection “Aggregation Induced Emission”; edited by Youhong Tang and Ben Zhong Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, A.C.B., Seixas de Melo, J.S. Aggregation-Induced Emission: From Small Molecules to Polymers—Historical Background, Mechanisms and Photophysics. Top Curr Chem (Z) 379, 15 (2021). https://doi.org/10.1007/s41061-021-00327-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-021-00327-9

Keywords

Navigation