Skip to main content
Log in

The application of chitosan in the control of post-harvest diseases: a review

  • Review
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Many post-harvest diseases are caused by wound pathogens, and the complete control of these agents is done through the use of an agent which grows rapidly and is environmental friendly. One of the commonly used agents in regulating post-harvest diseases is a polysaccharide called chitosan. It is a common polysaccharide mostly found in crustaceans shells and fungi cell wall. It is mainly produced by the deacetylation of chitin. A great number of researches are being done on chitosan to know its mode of action. Chitosan has been proven to have various effects on plants, bacteria, viruses, and fungi. This review is to provide the different studies which have been done to control post-harvest diseases and to get a full understanding on how chitosan works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aiba S (1994) Preparation of n-acetylchitooligosaccharides by hydrolysis of chitosan with chitinase followed by n-acetylation. Carbohydr Res 265(2):323–328

    CAS  PubMed  Google Scholar 

  • Alvarez MV, Ponce AG, Moreira MR (2013) Antimicrobial efficiency of chitosan coating enriched with bioactive compounds to improve the safety of fresh cut broccoli. LWT Food Sci Technol 50(1):78–87

    CAS  Google Scholar 

  • Anh DN, Van SN, Minh HD (2013) Study on chitosan nanoparticles on biophysical characteristics and growth of robusta coffee in greenhouse. Biocatal Agric Biotechnol 2:289–294

    Google Scholar 

  • Badawya MEI, Rabeab EI (2009) Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit. Postharvest Biol Technol 51:110–117

    Google Scholar 

  • Baldwin EA, Nisperos MO, Hagenmaier RH, Baker RA (1997) Use of lipids in edible coatings for food products. Food Technol 51:56–62

    CAS  Google Scholar 

  • Ban Z, Yan J, Wang Y, Zhang J, Yuan Q, Li L (2018) Effects of postharvest application of chitosan-based layer-by-layer assemblies on regulation of ribosomal and defense proteins in strawberry fruit (Fragaria ananassa). Sci Horticult 240:293–302

    CAS  Google Scholar 

  • Barka AE, Clément C, Eullaffroy P, Vernet G (2004) Chitosan improves development, and protects Vitis vinifera L. against botrytis cinera. Plant Cell Report 22:608–614

    Google Scholar 

  • Bautista-Baños S, Hernandez-Lauzardo AN, Hernandez-Lopez M, Barka EA, Velazquez-del Valle MG, Bosquez-Molina E, Wilson CL (2006) Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Prot 25:108–118

    Google Scholar 

  • Bautista-Baños S, Sivakumar D, Bello-Pérez A, Villanueva-Arce R, Hernández-López M (2013) A review of the management alternatives for controlling fungi on papaya fruit during the postharvest supply chain. Crop Prot 49:8–20

    Google Scholar 

  • Ben BN, Ardi R, Aki C, Pinto R, Fallik E (2003) Controlling gray mould caused by Botrytis cinerea in cucumber plants by means of chitosan. Crop Prot 22:285–290

    Google Scholar 

  • Campana-Filho SP, Curti E, De Britto D, Cardoso MB, Abreu FR, Battisti MV et al (2007) Extraction, structures and properties of \(\alpha\) - and \(\beta\) - chitin. Quim Nova 30:644–650

    CAS  Google Scholar 

  • Chang S-H, Lin H-TV, Wu G-J, Tsai GJ (2015) pH effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydr Polym 134:74–81

    CAS  PubMed  Google Scholar 

  • Chien P-J, Sheu F, Yang F-H (2007) Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. J Food Eng 78(1):225–229

    CAS  Google Scholar 

  • Chirkov SN, Il’ina AV, Surgucheva NA, Varitsev Y, Tatarinova A, Letunova EV et al (2001) Effect of chitosan on systemic viral infection and some defense responses in potato plants. Russ J Plant Physiol 48:774–779

    CAS  Google Scholar 

  • Darolt JC, da Rocha Neto AC, Di Piero RM (2016) Effects of the protective, curative, and eradicative applications of chitosan against Penicillium expansum in apples. Braz J Microbiol 47(4):1014–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deepmala K, Hemantaranjan A, Singh B (2015) Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Int J Plant Physiol 20:1–9

    Google Scholar 

  • El Ghaouth A, Arul J, Grenier J, Asselin A (1992) Antifungal activity of chitosan on two postharvest pathogens of strawberry fruits. Phytopathology 82:398–402

    Google Scholar 

  • Errington N, Harding S, Vårum K, Illum L (1993) Hydrodynamic characterization of chitosans varying in degree of acetylation. Int J Biol Macromol 15:113–117

    CAS  PubMed  Google Scholar 

  • Falcon AB, Cabrera JC, Costales D, Ramirez MA, Cabrera G, Toledo V (2008) The effect of size and acetylation degree of chitosan derivatives on tobacco plant protection against Phytophthora parasitica nicotianae. World J Microbiol Biotechnol 24:103–112

    CAS  Google Scholar 

  • Fernandez-Saiz P, Lagaron JM, Ocio MJ (2009) Optimization of the biocide properties of chitosan for its application in the design of active films of interest in the food area. Food Hydrocoll 23(3):913–921

    CAS  Google Scholar 

  • Garrido-Maestu A, Ma Z, Paik S-Y-R, Chen N, Ko S, Tong Z, Jeong KCC (2018) Engineering of chitosan-derived nanoparticles to enhance antimicrobial activity against foodborne pathogen Escherichia coli O157:H7. Carbohydr Polym 197:623–630

    CAS  PubMed  Google Scholar 

  • Gayed AANA, Shaarawi SAMA, Elkhishen MA, Elsherbini NRM (2017) Pre-harvest application of calcium chloride and chitosan on fruit quality and storability of early swelling peach during cold storage. Ciência e Agrotecnologia 41:220–231

    CAS  Google Scholar 

  • George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of proteins drug: alginate and chitosan—a review. J Control Release 114:1–14

    CAS  PubMed  Google Scholar 

  • Goldberg S, Doyle RJ, Rosenberg M (1990) Mechanism of enhancement of microbial cell hydrophobicity by cationic polymers. J Bacteriol 172(10):5650–5654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grenier J, Asselin A (1990) Some pathogenesis-related proteins are chitosanases with lytic activity against fungal spores. Mol Plant Micro Int 3:401–407

    CAS  Google Scholar 

  • Tsai G-J, Su W-H, Chen H-C, Pan C-L (2002) Antimicrobial activity of shrimp chitin and chitosan from different treatments and applications of fish preservation. Fish Sci 68(1):170–177

    CAS  Google Scholar 

  • Hadwiger LA, Beckman JM (1980) Chitosan as a component of pea-Fusarium solani interactions. Plant Physiol 66:205–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hajji S, Younes I, Ghorbel-Bellaaj O, Hajji R, Rinaudo M, Nasri M, Jellouli K (2014) Structural differences between chitin and chitosan extracted from three different marine sources. Int J Biol Macromol 65:298–306

    CAS  PubMed  Google Scholar 

  • Helander IM, Nurmiaho-Lassila E-L, Ahvenainen R, Rhoades J, Roller S (2001) Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria. Int J Food Microbiol 71(2):235–244

    CAS  PubMed  Google Scholar 

  • Hernandez-Lauzardo AN, Bautista-Banos S, Velazquez-del Valle MG, Mendez-Montealvo MG, Sanchez-Rivera MM, Bello-Perez LA (2008) Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (ehrenb.:fr.) vuill. Carbohydr Polym 73:541–547

    CAS  PubMed  Google Scholar 

  • Hernández-Muñoz P, Almenar E, Ocio MJ, Gavara R (2006) Effect of calcium dips and chitosan coatings on postharvest life of strawberries (Fragaria x ananassa). Postharvest Biol Technol 39(3):247–253

    Google Scholar 

  • Hirano S (1998) The activation of plant cells and their self-defence function against pathogens in connection with chitosan. Nippon Nogeikagaku Kaishi 1:293–295

    Google Scholar 

  • Hosseinnejad M, Jafari SM (2016) Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol 85:467–475

    CAS  PubMed  Google Scholar 

  • Huang M, Khor E, Lim L-Y (2004) Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res 21(2):344–353

    CAS  PubMed  Google Scholar 

  • Ilyina AV, Tatarinova NY, Varlamov VP (1999) The preparation of low-molecular-weight chitosan using chitinolytic complex from Streptomyces kurssanovii. Process Biochem 34(9):875–878

    CAS  Google Scholar 

  • Inmaculada A, Marian M, Ruth H, Beatriz M, Niuris A, Laura C, Angela S, Angeles H (2014) Role of physicochemical properties of chitin and chitosan on their functionality. Curr Chem Biol 8(1):27–42

    Google Scholar 

  • Janissiewicz WJ, Korsten L (2002) Biological control of postharvest diseases of fruits. Phytopathology 40:411–441

    Google Scholar 

  • Jeihanipour A, Karimi K, Taherzadeh MJ (2007) Antimicrobial properties of fungal chitosan. Res J Biol Sci 2:239–243

    Google Scholar 

  • Jeraj N, Kuniš B, Lenasi H, Breskvar K (2006) Purification and molecular characterization of chitin deacetylase from Rhizopus nigricans. Enzyme Microb Technol 39(6):1294–1299

    CAS  Google Scholar 

  • Jiang Y, Li Y (2001) Effect of chitosan coating on postharvest life and quality of longan fruit. Food Chem 73:501–508

    Google Scholar 

  • Duan J, Zhang S (2013) Application of chitosan based coating in fruit and vegetable preservation: a review. J Food Process Technol 4:227

    Google Scholar 

  • Xu J, Zhao X, Han X, Du Y (2007) Antifungal activity of oligochitosan against phytophthora capsici and other plant pathogenic fungi in vitro. Pestic Biochem Physiol 87(3):220–228

    CAS  Google Scholar 

  • Hu KJ, Hu JL, Ho KP, Yeung KW (2004) Screening of fungi for chitosan producers, and copper adsorption capacity of fungal chitosan and chitosanaceous materials. Carbohydr Polym 58(1):45–52

    CAS  Google Scholar 

  • Kennedy JF, Tian SP, Meng XH, Yang LY (2010) Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydr Polym 81:70–75

    Google Scholar 

  • Kim HJ, Chen F, Wang X, Rajapakse NC (2005) Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). J Agric Food Chem 53:3696–3701

    CAS  PubMed  Google Scholar 

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144(1):51–63

    CAS  PubMed  Google Scholar 

  • Kulikov SN, Chirkov SN, Il’ina AV, Lopatin SA, Varlamov VP (2006) Effect of the molecular weight of chitosan on its antiviral activity in plants. Appl Biochem Microbiol 42(2):200–203

    CAS  Google Scholar 

  • Kurita K (2001) Controlled functionalisation of polysaccharide chitin. Prog Polym 26:1921–1971

    CAS  Google Scholar 

  • Kurita K, Sannan T, Iwakura Y (2003) Studies on chitin, 4. evidence for formation of block and random copolymers of n-acetyl-d-glucosamine and d-glucosamine by hetero- and homogeneous hydrolyses. Die Makromolekulare Chemie 178:3197–3202

    Google Scholar 

  • Win NKK, Jitareerat P, Kanlayanarat S, Sangchote S (2007) Effects of cinnamon extract, chitosan coating, hot water treatment and their combinations on crown rot disease and quality of banana fruit. Postharvest Biol Technol 45(3):333–340

    CAS  Google Scholar 

  • Lee YS, Kim YH, Kim SB (2005) Changes in the respiration, growth and vitamin c content of soybean sprouts in response to chitosan different molecular weight. Hortic Sci 40:1333–1335

    CAS  Google Scholar 

  • Li H, Yu T (2000) Effects of chitosan on incidence of brown rot, quality and physiological attributes of postharvest peach. J Sci Food Agric 81:269–274

    Google Scholar 

  • Li Q, Ren J, Dong F, Feng Y, Guodong G, Guo Z (2013) Synthesis and antifungal activity of thiadiazole-functionalized chitosan derivatives. Carbohydr Res 373:103–107

    CAS  PubMed  Google Scholar 

  • Li H, Wang Y, Liu F, Yang Y, Ziming W, Cai H, Zhang Q, Wang Y, Li P (2015) Effects of chitosan on control of postharvest blue mold decay of apple fruit and the possible mechanisms involved. Sci Horticult 186:77–83

    CAS  Google Scholar 

  • Liang J, Yan H, Puligundla P, Gao X, Zhou Y, Wan X (2017) Applications of chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: a review. Food Hydrocoll 69:286–292

    CAS  Google Scholar 

  • Lim S-H, Hudson SM (2004) Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydr Res 339(2):313–319

    CAS  PubMed  Google Scholar 

  • Liu RH (2003) Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 78(3):517S–520S

    CAS  PubMed  Google Scholar 

  • Liu J, Tian S, Meng X, Yong X (2007) Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biol Technol 44(3):300–306

    CAS  Google Scholar 

  • Liu H, Tian W, Li B, Guoxing W, Ibrahim M, Tao Z, Wang Y, Xie G, Li H, Sun G (2012) Antifungal effect and mechanism of chitosan against the rice sheath blight pathogen, Rhizoctonia solani. Biotechnol Lett 34(12):2291–2298

    CAS  PubMed  Google Scholar 

  • Liu S, Zong H, Xing R, Chen X, Li P (2017) Protective effect of chitosan on photosynthesis and antioxidative defense system in edible rape (Brassica rapa L.) in the presence of cadmium. Ecotoxicol Environ Saf 138:271–278

    PubMed  Google Scholar 

  • Lizardi-Mendoza J, Argüelles Monal WM, Goycoolea Valencia FM (2016) Chapter 1 - chemical characteristics and functional properties of chitosan. In: Bautista-Baños S, Romanazzi G, Jiménez-Aparicio A (eds) Chitosan in the preservation of agricultural commodities. Academic Press, San Diego, pp 3–31

    Google Scholar 

  • Lizardi-Mendoza J, Argüelles MWM, Goycoolea VFM (2016) Chemical characteristics and functional properties. In: Chitosan in the Preservation of Agricultural Commodities, pp 3–39

    Google Scholar 

  • Lopez-Moya F, Colom-Valiente MF, Martinez-Peinado P, Martinez-Lopez JE, Puelles E, Sempere-Ortells JM, Lopez-Llorca LV (2015) Carbon and nitrogen limitation increase chitosan antifungal activity in neurospora crassa and fungal human pathogens. Fungal Biol 119(2):154–169

    CAS  PubMed  Google Scholar 

  • Ma Z, Yang L, Yan H, Kennedy JF, Meng X (2013) Chitosan and oligochitosan enhance the resistance of peach fruit to brown rot. Carbohydr Polym 94(1):272–277

    CAS  PubMed  Google Scholar 

  • Mazancová P, Némethová V, Trel’ová D, Kleščíková L, Lacík I, Rázga F (2018) Dissociation of chitosan/tripolyphosphate complexes into separate components upon pH elevation. Carbohydr Polym 192:104–110

    PubMed  Google Scholar 

  • Meng R, Li B, Liu J, Tian S (2008) Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage. Food Chem 106:501–508

    CAS  Google Scholar 

  • Meng X, Yang L, Kennedy JF, Tian S (2010) Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydr Polym 81(1):70–75

    CAS  Google Scholar 

  • Molloy C, Cheah L-H, Koolaard JP (2004) Induced resistance against Sclerotinia sclerotiorum in carrots treated with enzymatically hydrolysed chitosan. Postharvest Biol Technol 33(1):61–65

    CAS  Google Scholar 

  • Munhuweyi K, Lennox CL, Meitz-Hopkins JC, Caleb OJ, Sigge GO, Opara UL (2017) Investigating the effects of crab shell chitosan on fungal mycelial growth and postharvest quality attributes of pomegranate whole fruit and arils. Sci Horticult 220:78–89

    CAS  Google Scholar 

  • Munhuweyi K, Caleb OJ, Lennox CL, van Reenen AJ, Opara UL (2017) In vitro and in vivo antifungal activity of chitosan-essential oils against pomegranate fruit pathogens. Postharvest Biol Technol 129:9–22

    CAS  Google Scholar 

  • Munoz Z, Moret A, Garces S (2009) Assessment of chitosan for inhibition of Colletotrichum sp. on tomatoes and grapes. Crop Prot 28:36–40

    CAS  Google Scholar 

  • No HK, Meyers SP (1995) Preparation and characterization of chitin and chitosan—a review. J Aquat Food Prod Technol 4(2):27–52

    CAS  Google Scholar 

  • Nunes CA (2011) Biological control of postharvest diseases. Eur J Plant Pathol 133:181–196

    Google Scholar 

  • Orgaz B, Lobete MM, Puga CH, San Jose C (2011) Effectiveness of chitosan against mature biofilms formed by food related bacteria. Int J Mol Sci 12(1):817–828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palma-Guerrero J, Lopez-Jimenez JA, Pérez-Berná AJ, Huang I-C, Jansson H-B, Salinas J, Villalaín J, Read ND, Lopez-Llorca LV (2010) Membrane fluidity determines sensitivity of filamentous fungi to chitosan. Mol Microbiol 75(4):1021–1032

    CAS  PubMed  Google Scholar 

  • Park SI, Daeschel MA, Stan SD, Zhao YY (2005) Antifungal coatings on fresh strawberries (Fragaria x ananassa) to control mold growth during cold storage. J Food Sci 70:M202–M207

    CAS  Google Scholar 

  • Plainsirichai M, Leelaphatthanapanich S, Wongsachai N (2014) Effect of chitosan on the quality of rose apples (Syzygium Agueum Alston) cv. tabtim chan stored at an ambient temperature. APCBEE Procedia 8:317–322

    CAS  Google Scholar 

  • Qin C, Du Y, Xiao L, Gao X, Zhou J, Liu H (2002) Effect of molecular weight and structure on antitumor activity of oxidized chitosan. Wuhan Univ J Nat Sci 7(2):231–236

    CAS  Google Scholar 

  • Qiu M, Chu W, Ren G, Liang X, Wang X, Huang J (2014) Effect of chitosan and its derivatives as antifungal and preservative agents on postharvest green asparagus. Food Chem 155:105–111

    CAS  PubMed  Google Scholar 

  • Reddy BMV, Belkacemi K, Castaigne F, Corcuff R, Arul J (2000) Effect of pre-harvest chitosan sprays on post-harvest infection by Botrytis cinerea and quality of strawberry fruit. Postharvest Biol Technol 20:39–51

    Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym 31:603–607

    CAS  Google Scholar 

  • Roberts GAF (1992) Chemical behaviour of chitin and chitosan. Macmillan Education, London, pp 203–273

    Google Scholar 

  • Romanazzi G, Nigro F, Ippolito A, DiVenere D, Salerno M (2002) Effects of pre- and postharvest chitosan treatments to control storage grey mold of table grapes. J Food Sci 67(5):1862–1867

    CAS  Google Scholar 

  • Romanazzi G, Karabulut OA, Smilanick JL (2007) Combination of chitosan and ethanol to control postharvest gray mold of table grapes. Postharvest Biol Technol 45(1):134–140

    CAS  Google Scholar 

  • Sorlier P, Viton C, Domard A (2002) Relation between solution properties and degree of acetylation of chitosan: role of aging. Biomacromolecules 3(6):1336–1342

    CAS  PubMed  Google Scholar 

  • Sun L, Du Y, Fan L, Chen X, Yang J (2006) Preparation, characterization and antimicrobial activity of quaternized carboxymethyl chitosan and application as pulp-cap. Polymer 47(6):1796–1804

    CAS  Google Scholar 

  • Sun X, Bi Y, Li Y, Han R, Ge Y (2008) Postharvest chitosan treatment induces resistance in potato against fusarium sulphureum. Agric Sci China 7(5):615–621

    CAS  Google Scholar 

  • Supapvanich S, Chimsoontorn V, Anan W, Boonyaritthongchai P, Tepsorn R, Techavuthiporn C (2018) Effect of preharvest chitosan application on bioactive compounds of and sunflower sprouts during storage. J Agric Technol 14:1987–1998

    CAS  Google Scholar 

  • Taylor JT, Wood PN, Hoyte SM, Reglinski T, Elmer PAG (2010) Inhibition of Botrytis cinerea growth and suppression of Botrytis bunch rot in grapes using chitosan. Plant Pathol 59:882–890

    Google Scholar 

  • Tipparat H, Oraphan R (2008) Effect of deacetylation conditions on antimicrobial activity of chitosans prepared from carapace of black tiger shrimp (Penaeus monodon). Songklanakarin J Sci Technol 30:1

    Google Scholar 

  • Tolaimate A, Desbrieres J, Rhazi M, Alagui A (2003) Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties. Polymer 44(26):7939–7952

    CAS  Google Scholar 

  • Trotel-Aziz P, Couderchet M, Vernet G, Aziz A (2006) Chitosan stimulates defense reactions in grapevine leaves and inhibits development of Botrytis cinerea. Eur J Plant Phatol 114(4):405–413

    CAS  Google Scholar 

  • Tsigos I, Martinou A, Kafetzopoulos D, Bouriotis V (2000) Chitin deacetylases: new, versatile tools in biotechnology. Trends Biotechnol 18(7):305–312

    CAS  PubMed  Google Scholar 

  • Verlee A, Mincke S, Stevens CV (2017) Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr Polym 164:268–283

    CAS  PubMed  Google Scholar 

  • Vieiraa JM, Flores-Lópezb ML, de Rodríguez DJ, Sousaa d Maria C, Vicente António A, Martinsb Joana T (2016) Effect of chitosan aloe vera coating on postharvest quality of blueberry (Vaccinium corymbosum) fruit. Postharvest Biol Technol 116:88–97

    Google Scholar 

  • Wang L, Hao W, Qin G, Meng X (2014) Chitosan disrupts Penicillium expansum and controls postharvest blue mold of jujube fruit. Food Control 41:56–62

    Google Scholar 

  • Wang M, Chen Y, Zhangc R, Wang W, Zhao X, Du Y, Yin H (2014) Effects of chitosan oligosaccharides on the yield components and production quality of different wheat cultivars (Triticum aestivum L.) in Northwest China. Field Crops Res 172:11–20

    Google Scholar 

  • Wu T, Zivanovic S, Ann Draughon F, Conway WS, Sams CE (2005) Physicochemical properties and bioactivity of fungal chitin and chitosan. J Agric Food Chem 53(10):3888–3894

    CAS  PubMed  Google Scholar 

  • Xiao B, Wan Y, Zhao M, Liu Y, Zhang S (2011) Preparation and characterization of antimicrobial chitosan-n-arginine with different degrees of substitution. Carbohydr Polym 83(1):144–150

    CAS  Google Scholar 

  • Xing Y, Xu Q, Li X, Chen C, Ma L, Li S, Che Z, Lin H (2016) Chitosan-based coating with antimicrobial agents: preparation, property, mechanism, and application effectiveness on fruits and vegetables. Int J Polym Sci 2016:24

    Google Scholar 

  • Yin H, Zhao X, Du Y (2010) Oligochitosan: a plant diseases vaccine—a review. Carbohydr Polym 82:1–8

    CAS  Google Scholar 

  • Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs 13(3):1133–1174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu T, Wang L, Yin Y, Wang Y, Zheng X (2008) Chitosan as a component of pea-Fusarium solani interactions. Int J Food Microb 66:44–48

    Google Scholar 

  • Yuan G, Chen X, Li D (2016) Chitosan films and coatings containing essential oils: the antioxidant and antimicrobial activity, and application in food systems. Food Res Int 89:117–128

    CAS  PubMed  Google Scholar 

  • Yun H, Zhao X, Du Y (2010) Oligochitosan: a plant diseases vaccine-a review. Carbohydr Polym 82:1–8

    Google Scholar 

  • Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev 2(3):204–226

    CAS  Google Scholar 

  • Zeng K, Deng Y, Ming J, Deng L (2010) Induction of disease resistance and ROS metabolism in navel oranges by chitosan. Sci Horticult 126(2):223–228

    CAS  Google Scholar 

  • Zhang H, Li R, Liu W (2011) Effects of chitin and its derivative chitosan on postharvest decay of fruits: a review. Int J Mol Sci 12:917–934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Spadaro D, Garibaldi A, Gullino ML (2011) Potential biocontrol activity of a strain of pichia guilliermondii against grey mold of apples and its possible modes of action. Biol Control 57(3):193–201

    Google Scholar 

  • Zhang S, Yu Y, Xiao C, Wang X, Tian Y (2013) Effect of carbon monoxide on browning of fresh-cut lotus root slice in relation to phenolic metabolism. LWT Food Sci Technol 53(2):555–559

    CAS  Google Scholar 

  • Zhang H, Ge L, Chen K, Zhao L, Zhang X (2014) Enhanced biocontrol activity of Rhodotorula mucilaginosa cultured in media containing chitosan against postharvest diseases in strawberries: Possible mechanisms underlying the effect. J Agric Food Chem 62(18):4214–4224

    CAS  PubMed  Google Scholar 

  • Zhuang C, Zhong Y, Zhao Y (2019) Effect of deacetylation degree on properties of chitosan films using electrostatic spraying technique. Food Control 97:25–31

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Chinese Scholarship Council for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Garba Betchem or Yun Wang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Human and animal participants

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betchem, G., Johnson, N.A.N. & Wang, Y. The application of chitosan in the control of post-harvest diseases: a review. J Plant Dis Prot 126, 495–507 (2019). https://doi.org/10.1007/s41348-019-00248-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-019-00248-2

Keywords

Navigation