Skip to main content
Log in

Synthesis, radiolabeling and biological evaluation of butene amine oxime containing nitrotriazole as a tumor hypoxia marker

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

99mTc-BnAO, as a nonnitroaromatic hypoxia marker, is the subject of intensive research in recent years. In this study, a butene amine oxime–nitrotriazole (BnAO–NT) was synthesized and radiolabeled with 99mTc in high yield. Cellular uptakes of 99mTc-BnAO–NT and 99mTc-BnAO were tested using murine sarcoma S180 and hepatoma H22 cell lines. The highest hypoxic cellular uptake of 99mTc-BnAO–NT was 27.11 ± 0.73 and 14.85 ± 0.83 % for the S180 and H22 cell lines, respectively, whereas the normoxic cellular uptake of the complex was about 4–8 % for both cell lines. For 99mTc-BnAO, the highest hypoxic cellular uptake was 30.79 ± 0.44 and 9.66 ± 1.20 % for the S180 and H22 cell lines, respectively, while the normoxic cellular uptake was about 5 % for both cell lines. Both 99mTc-BnAO–NT and 99mTc-BnAO complexes showed hypoxic/normoxic differentials in the two cell lines, but the results were more significant for the S180 cell line. The in vitro results suggested that S180 may be better than H22 cell line in hypoxic biological evaluation of BnAO complexes. The biodistribution study was tested using a S180 tumor model. The complex 99mTc-BnAO–NT showed a selective enrichment in tumor tissues: At 4 h, the tumor-to-muscle ratio was 3.79 ± 0.98 and the tumor-to-blood ratio was 2.31 ± 0.34. Compared with the results of 99mTc-BnAO, the latter was at the same level. In vitro and in vivo studies demonstrated that 99mTc-BnAO–NT could be a hypoxia-sensitive radiotracer for monitoring hypoxic regions in a sarcoma S180 tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G.L. Semenza, Angiogenesis ischemic and neoplastic disorders. Annu. Rev. Med. 54, 17–28 (2003). doi:10.1146/annurev.med.54.101601.152418

    Article  Google Scholar 

  2. K.A. Krohn, J.M. Link, R.P. Mason, Molecular imaging of hypoxia. J. Nucl. Med. 49, 129S–148S (2008). doi:10.2967/jnumed.107.045914

    Article  Google Scholar 

  3. B.J. Moeller, R.A. Richardson, M.W. Dewhirst, Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. Cancer Metastasis Rev. 26, 241–248 (2007). doi:10.1007/s10555-007-9056-0

    Article  Google Scholar 

  4. P. Vaupel, Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. Oncologist 13, 21–26 (2008). doi:10.1634/theoncologist.13-S3-21

    Article  Google Scholar 

  5. B.G. Wouters, S.A. Weppler, M. Koritzinsky et al., Hypoxia as a target for combined modality treatments. Eur. J. Cancer 38, 240–257 (2002). doi:10.1016/S0959-8049(01)00361-6

    Article  Google Scholar 

  6. J.R. Ballinger, Imaging hypoxia in tumors. Semin. Nucl. Med. 31, 321–329 (2001). doi:10.1053/snuc.2001.26191

    Article  Google Scholar 

  7. S.K. Chitneni, G.M. Palmer, M.R. Zalutsky et al., Molecular imaging of hypoxia. J. Nucl. Med. 52, 165–168 (2011). doi:10.2967/jnumed.110.075663

    Article  Google Scholar 

  8. G. Mees, R. Dierckx, C. Vangestel et al., Molecular imaging of hypoxia with radiolabelled agents. Eur. J. Nucl. Med. Mol. Imaging 36, 1674–1686 (2009). doi:10.1007/s00259-009-1195-9

    Article  Google Scholar 

  9. X.L. Sun, G. Niu, N. Chan et al., Tumor hypoxia imaging. Mol. Imaging Biol. 13, 399–410 (2011). doi:10.1007/s11307-010-0420-z

    Article  Google Scholar 

  10. R.D. Okada, G. Johnson, K.N. Nguyen et al., Tc-99m-HL91—“Hot spot” detection of ischemic myocardium in vivo by gamma camera imaging. Circulation 97, 2557–2566 (1998). doi:10.1161/01.CIR.97.25.2557

    Article  Google Scholar 

  11. X. Zhang, T. Melo, J.R. Ballinger et al., Studies of 99mTc-BnAO (HL-91): a non-nitroaromatic compound for hypoxic cell detection. Int. J. Radiat. Oncol. 42, 737–740 (1998). doi:10.1016/S0360-3016(98)00301-0

    Article  Google Scholar 

  12. H.M. Jia, D.C. Fang, Y. Feng et al., The interconversion mechanism between TcO3+ and TcO2+ core of 99mTc labeled amine-oxime (AO) complexes. Theor. Chem. Acc. 121, 271–278 (2008). doi:10.1007/s00214-008-0474-z

    Article  Google Scholar 

  13. C.C. Hsia, F.L. Huang, C.H. Lin et al., The preparation and biological characterization of a new HL91-derivative for hypoxic imaging on stroke mice. Appl. Radiat. Isot. 68, 1610–1615 (2010). doi:10.1016/j.apradiso.2010.03.008

    Article  Google Scholar 

  14. X. Sun, T.W. Chu, X.Y. Wang, Preliminary studies of 99mTc-BnAO and its analogue: synthesis, radiolabeling and in vitro cell uptake. Nucl. Med. Biol. 37, 117–123 (2010). doi:10.1016/j.nucmedbio.2009.09.003

    Article  Google Scholar 

  15. W. Dobrowsky, N.G. Huigol, R.S. Jayatilake et al., AK-2123 (Sanazol) as a radiation sensitizer in the treatment of stage III cervical cancer: results of an IAEA multicentre randomised trial. Radiother. Oncol. 82, 24–29 (2007). doi:10.1016/j.radonc.2006.11.007

    Article  Google Scholar 

  16. T. Das, S. Chakraborty, S. Banerjee et al., Preparation and preliminary biological evaluation of a 177Lu labeled sanazole derivative for possible use in targeting tumor hypoxia. Bioorg. Med. Chem. 12, 6077–6084 (2004). doi:10.1016/j.bmc.2004.09.007

    Article  Google Scholar 

  17. R. Bejot, V. Kersemans, C. Kelly et al., Pre-clinical evaluation of a 3-nitro-1,2,4-triazole analogue of [18F]FMISO as hypoxia-selective tracer for PET. Nucl. Med. Biol. 37, 565–575 (2010). doi:10.1016/j.nucmedbio.2010.03.011

    Article  Google Scholar 

  18. S. Murugesan, S.J. Shetty, O.P.D. Noronha et al., Technetium-99m-cyclam AK 2123: a novel marker for tumor hypoxia. Appl. Radiat. Isot. 54, 81–88 (2001). doi:10.1016/S0969-8043(00)00104-4

    Article  Google Scholar 

  19. Y. Zhang, T.W. Chu, X. Gao et al., Synthesis and preliminary biological evaluation of the 99mTc labeled nitrobenzoimidazole and nitrotriazole as tumor hypoxia markers. Bioorg. Med. Chem. Lett. 16, 1831–1833 (2006). doi:10.1016/j.bmcl.2006.01.001

    Article  Google Scholar 

  20. H.F. Huang, L. Mei, T.W. Chu, Synthesis, radiolabeling and biological evaluation of propylene amine oxime complex containing nitrotriazole as hypoxia markers. Molecules 17, 6808–6820 (2012). doi:10.3390/molecules17066808

    Article  Google Scholar 

  21. C.C. Hsia, F.L. Huang, G.U. Hung et al., The biological characterization of 99mTc-BnAO–NI as a SPECT probe for imaging hypoxia in a sarcoma-bearing mouse model. Appl. Radiat. Isot. 69, 649–655 (2011). doi:10.1016/j.apradiso.2010.12.009

    Article  Google Scholar 

  22. H.F. Huang, H. Zhou, Z.J. Li et al., Effect of a second nitroimidazole redox centre on the uptake of a hypoxia marker: synthesis and in vitro evaluation of 99mTc-labeled bisnitroimidazole propylene amine oxime complex. Bioorg. Med. Chem. Lett. 22, 172–177 (2012). doi:10.1016/j.bmcl.2011.11.042

    Article  Google Scholar 

  23. L. Mei, W.J. Sun, T.W. Chu, Synthesis and biological evaluation of novel 99mTcN-labeled bisnitroimidazole complexes containing monoamine-monoamide dithiol as potential tumor hypoxia markers. J. Radioanal. Nucl. Chem. 301, 831–838 (2014). doi:10.1007/s10967-014-3235-6

    Article  Google Scholar 

  24. H.F. Huang, H. Zhou, S.T. Huang et al., Synthesis, radiolabeling and biodistribution of 99Tcm-BnAO ethylene glycol monoethyl ether derivate. Isotopes 24, 29–33 (2011)

    Google Scholar 

  25. D.J. Kong, J. Lu, S.Z. Ye et al., Synthesis and biological evaluation of a novel asymmetrical 99mTc-nitrido complex of metronidazole derivative. J. Label. Compd. Radiopharm. 50, 1137–1142 (2007). doi:10.1002/jlcr.1292

    Article  Google Scholar 

  26. B.F. Wang, X.J. Wang, H.F. Kang et al., Saikosaponin-d enhances radiosensitivity of hepatoma cells under hypoxic conditions by inhibiting hypoxia inducible factor-1 alpha. Cell. Physiol. Biochem. 33, 37–51 (2014). doi:10.1159/000356648

    Article  MathSciNet  Google Scholar 

  27. P. Burgman, J.A. O’Donoghue, J.S. Lewis et al., Cell line-dependent differences in uptake and retention of the hypoxia-selective nuclear imaging agent Cu-ATSM. Nucl. Med. Biol. 32, 623–630 (2005). doi:10.1016/j.nucmedbio.2005.05.003

    Article  Google Scholar 

  28. L. Hoigebazar, J.M. Jeong, M.K. Hong et al., Synthesis of 68Ga-labeled DOTA-nitroimidazole derivatives and their feasibilities as hypoxia imaging PET tracers. Bioorg. Med. Chem. 19, 2176–2181 (2011). doi:10.1016/j.bmc.2011.02.041

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21371017 and 81371592).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai-Wei Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Chu, TW. Synthesis, radiolabeling and biological evaluation of butene amine oxime containing nitrotriazole as a tumor hypoxia marker. NUCL SCI TECH 27, 34 (2016). https://doi.org/10.1007/s41365-016-0028-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0028-3

Keywords

Navigation