Skip to main content
Log in

A new mobile grazing-incidence X-ray absorption fine spectroscopy endstation at Beijing Synchrotron Radiation Facility

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Purpose

A new mobile grazing-incidence X-ray absorption fine spectroscopy (GIXAFS) endstation was developed at Beijing Synchrotron Radiation Facility (BSRF) to improve the function of general XAFS beamlines and extend their capabilities to a wider user community.

Methods

We developed a facile GIXAFS endstation through modifying the regular XAFS in grazing-incidence geometry. Additionally, a soller slit, filter, photographic film and tiny lead sheets were assembled to improve the signal-to-noise ratio of XAFS data. Furtherly, combined with time-resolved quick scanning XAFS (QXAFS) techniques, the systems can perform in situ XAFS measurement to study materials under operando condition.

Results

The GIXAFS had been used to collect the Ga K-edge XAFS of InGaN thin film on sapphire substrate, which demonstrated that signal-to-noise ratio of XAFS data had been greatly improved through suppressing the effect of substrate diffractions. Moreover, the feasibility of GIXAFS-QXAFS combination was illustrated with in situ exploring the degradation of organic–inorganic perovskites under X-ray radiation.

Conclusion

A new mobile and facile GIXAFS endstation has been developed for thin films study. Based on the photographic film and lead sheets, the contamination of the XAFS from the matrix is minimized. Further combined with QXAFS techniques, the systems are used to reveal the X-ray-induced organic–inorganic perovskite thin films photodegrading process, which proved their successful application in the time-resolved measurements, extending the capabilities of general beamlines available to a wider user community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Lee, P. Citrin, P. Eisenberger, B. Kincaid, Rev. Mod. Phys. 53, 769 (1981). https://doi.org/10.1103/RevModPhys.53.769

    Article  ADS  Google Scholar 

  2. J.J. Rehr, R.C. Albers, Rev. Mod. Phys. 72, 621 (2000). https://doi.org/10.1103/RevModPhys.72.621

    Article  ADS  Google Scholar 

  3. L.R. Sharpe, W.R. Heineman, R.C. Elder, Chem. Rev. 90, 705 (1990). https://doi.org/10.1021/cr00103a002

    Article  Google Scholar 

  4. H. Oyanagi, A. Tsukada, M. Naito, N.L. Saini, M.-O. Lampert, D. Gutknecht, P. Dressler, S. Ogawa, K. Kasai, S. Mohamed, A. Fukano, J. Synchrotron Rad. 13(4), 314–320 (2016). https://doi.org/10.1107/S0909049506015251

    Article  Google Scholar 

  5. C. Maurizioa, M. Rovezzi, F. Bardellib, H.G. Paisc, F. D’Acapito, Rev. Sci. Instrum. 80(6), 063904 (2009). https://doi.org/10.1063/1.3155791

    Article  ADS  Google Scholar 

  6. V. López-Flores, S. Ansell, D.T. Bowron, S. Díaz-Moreno, S. Ramos, A. Muñoz-Páez, Rev. Sci. Instrum. 78(1), 013109 (2007). https://doi.org/10.1063/1.2409763

    Article  ADS  Google Scholar 

  7. H. Yu, Y. Huang, X. Wei, Z. Jiang, J. Wang, S. Gu, S. Zhang, X. Gao, Nucl. Tech. 34(7), 489–493 (2011)

    Google Scholar 

  8. L. Yan, S. Hu, J. Duan, C. Jing, J. Phys. Chem. A 118, 4759–4765 (2014). https://doi.org/10.1021/jp500097v

    Article  Google Scholar 

  9. D. Lützenkirchen-Hecht, J. Stötzel, O. Müller, J. Just, R. Frahm, J. Phys.: Conf. Ser. 430, 012124 (2013). https://doi.org/10.1088/1742-6596/430/1/012124

    Article  Google Scholar 

  10. D. Lützenkirchen-Hecht, J. Stötzel, J. Just, O. Müller, B. Bornmann, R. Frahm, Phys. Status Solidi A (2021). https://doi.org/10.1002/pssa.202100514

    Article  Google Scholar 

  11. B. Ravel, M. Newville, J. Synchrotron Radiat. 12, 537–541 (2005). https://doi.org/10.1107/S0909049505012719

    Article  Google Scholar 

  12. S. Chu, L. Zheng, P. An, H. Gong, T. Hu, Y. Xie, J. Zhang, J. Synchrotron Rad. 24(3), 674–678 (2017). https://doi.org/10.1107/S1600577517005276

    Article  Google Scholar 

  13. L. Chouhan, S. Ghimire, C. Subrahmanyam, T. Miyasaka, V. Biju, Chem. Soc. Rev. 49, 2869–2885 (2020). https://doi.org/10.1039/C9CS00848A

    Article  Google Scholar 

  14. J. Shamsi, A.S. Urban, M. Imran, L.D. Trizio, L. Manna, Chem. Rev. 119, 3296–3348 (2019). https://doi.org/10.1021/acs.chemrev.8b00644

    Article  Google Scholar 

  15. Y. Wei, Z. Cheng, J. Lin, Chem. Soc. Rev. 48, 310–350 (2019). https://doi.org/10.1039/C8CS00740C

    Article  Google Scholar 

  16. J. Berry, T. Buonassisi, D.A. Egger, G. Hodes, L. Kronik, Y.L. Loo, I. Lubomirsky, S.R. Marder, Y. Mastai, J.S. Miller, D.B. Mitzi, Y. Paz, A.M. Rappe, I. Riess, B. Rybtchinski, O. Stafsudd, V. Stevanovic, M.F. Toney, D. Zitoun, A. Kahn, D. Ginley, D. Cahen, Adv. Mater. 27, 5102–5112 (2015). https://doi.org/10.1002/adma.201502294

    Article  Google Scholar 

  17. C.-H.A. Li, Z.C. Zhou, P. Vashishtha, J.E. Halpert, Chem. Mater. 31, 6003–6032 (2019). https://doi.org/10.1021/acs.chemmater.9b01650

    Article  Google Scholar 

  18. S.B. Naghadeh, B. Luo, G. Abdelmageed, Y.-C. Pu, C. Zhang, J.Z. Zhang, J. Phys. Chem. C 122(28), 15799–15818 (2018). https://doi.org/10.1021/acs.jpcc.8b03681

    Article  Google Scholar 

  19. W.-C. Lin, W.-C. Lo, J.-X. Li, P.-C. Huang, M.-Y. Wang, Omega 6, 34606–34614 (2021). https://doi.org/10.1021/acsomega.1c05002

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support by the National Key Research and Development Program of China (Grant No.2017YFA0403400) and the National Natural Science Foundation of China (NSFC) (U1932201, U2032202).

Author information

Authors and Affiliations

Authors

Contributions

Jing Zhang and Pengfei An conceived the idea and designed the experiments. Zi Yin and Guikai Zhang investigated the literature, analyzed the data and wrote the first draft of the manuscript. Yaning Xie carried out the optimization of grazing-incidence X-ray absorption fine spectroscopy (GIXAFS) setup. Yu Chen carried out the optimization of the alignment procedure in GIXAFS measurements. Cheng Shao and Dongyan Song synthesized the sample used in the experiment and carried out the device fabrication and characterizations. Shengqi Chu and Lirong Zheng also contributed to device fabrication. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Pengfei An or Jing Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Z., Zhang, G., Xie, Y. et al. A new mobile grazing-incidence X-ray absorption fine spectroscopy endstation at Beijing Synchrotron Radiation Facility. Radiat Detect Technol Methods 6, 194–200 (2022). https://doi.org/10.1007/s41605-022-00317-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-022-00317-5

Keywords

Navigation