Skip to main content

Advertisement

Log in

Prussian Blue Analogues as Electrodes for Aqueous Monovalent Ion Batteries

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Aqueous batteries have engendered increasing attention as promising solutions for stationary energy storage due to their potentially low cost and innate safety. In various aqueous battery systems, Prussian blue analogues (PBAs) represent a class of promising electrode materials with fascinating electrochemical performance, owing to their large open frameworks, abundant ion insertion sites, and facile preparation. To date, PBAs have shown substantial progress towards storage of alkali metal ions (Li+, Na+, and K+), H+, and NH4+ in aqueous electrolytes, which, however, has yet not been specifically summarized. This review selects some representative research to introduce the progress of PBAs in these battery systems and aims to discuss the crucial role of ionic charge carrier in affecting the overall electrode performance. Besides, some critical knowledge gaps and challenges of PBA materials have been pointed out for future development.

Graphic Abstract

This review introduces the recent progress of Prussian blue analogues for aqueous monovalent ion batteries, including metal ions of Li+, Na+, K+, and non-metal ions of H+ and NH4+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yang, Z.G., Zhang, J.L., Kintner-Meyer, M.C.W., et al.: Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011). https://doi.org/10.1021/cr100290v

    Article  CAS  PubMed  Google Scholar 

  2. Goodenough, J.B., Park, K.S.: The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438

    Article  CAS  PubMed  Google Scholar 

  3. Cao, Y.L., Xiao, L.F., Sushko, M.L., et al.: Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12, 3783–3787 (2012). https://doi.org/10.1021/nl3016957

    Article  CAS  PubMed  Google Scholar 

  4. Ji, X.L.: A paradigm of storage batteries. Energy Environ. Sci. 12, 3203–3224 (2019). https://doi.org/10.1039/c9ee02356a

    Article  CAS  Google Scholar 

  5. Bin, D., Wang, F., Tamirat, A.G., et al.: Progress in aqueous rechargeable sodium-ion batteries. Adv. Energy Mater. 8, 1703008 (2018). https://doi.org/10.1002/aenm.201703008

    Article  CAS  Google Scholar 

  6. Chao, D.L., Zhou, W.H., Xie, F.X., et al.: Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6, eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gao, X.Y., Zhang, H.Z., Liu, X.Q., et al.: Flexible Zn-ion batteries based on manganese oxides: progress and prospect. Carbon Energy 2, 387–407 (2020). https://doi.org/10.1002/cey2.63

    Article  CAS  Google Scholar 

  8. Lai, C.S., McCulloch, M.D.: Levelized cost of electricity for solar photovoltaic and electrical energy storage. Appl. Energy 190, 191–203 (2017). https://doi.org/10.1016/j.apenergy.2016.12.153

    Article  Google Scholar 

  9. Li, W., Dahn, J.R., Wainwright, D.S.: Rechargeable lithium batteries with aqueous electrolytes. Science 264, 1115–1118 (1994). https://doi.org/10.1126/science.264.5162.1115

    Article  CAS  PubMed  Google Scholar 

  10. Li, Z., Young, D., Xiang, K., et al.: Towards high power high energy aqueous sodium-ion batteries: the NaTi2(PO4)3/Na0.44MnO2 system. Adv. Energy Mater. 3, 290–294 (2013). https://doi.org/10.1002/aenm.201200598

    Article  CAS  Google Scholar 

  11. Pasta, M., Wessells, C.D., Huggins, R.A., et al.: A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 3, 1–7 (2012). https://doi.org/10.1038/ncomms2139

    Article  CAS  Google Scholar 

  12. Dong, S.Y., Shin, W., Jiang, H., et al.: Ultra-fast NH4+ storage: strong h bonding between NH4+ and bi-layered V2O5. Chem 5, 1537–1551 (2019). https://doi.org/10.1016/j.chempr.2019.03.009

    Article  CAS  Google Scholar 

  13. Chen, L., Bao, J.L., Dong, X., et al.: Aqueous Mg-ion battery based on polyimide anode and Prussian blue cathode. ACS Energy Lett. 2, 1115–1121 (2017). https://doi.org/10.1021/acsenergylett.7b00040

    Article  CAS  Google Scholar 

  14. Gheytani, S., Liang, Y.L., Wu, F.L., et al.: An aqueous Ca-ion battery. Adv. Sci. 4, 1700465 (2017). https://doi.org/10.1002/advs.201700465

    Article  CAS  Google Scholar 

  15. Wang, P.J., Shi, X.D., Wu, Z.X., et al.: Layered hydrated vanadium oxide as highly reversible intercalation cathode for aqueous Zn-ion batteries. Carbon Energy 2, 294–301 (2020). https://doi.org/10.1002/cey2.39

    Article  CAS  Google Scholar 

  16. Li, Z., Xiang, K., Xing, W.T., et al.: Reversible aluminum-ion intercalation in Prussian blue analogs and demonstration of a high-power aluminum-ion asymmetric capacitor. Adv. Energy Mater. 5, 1401410 (2015). https://doi.org/10.1002/aenm.201401410

    Article  CAS  Google Scholar 

  17. Suo, L.M., Borodin, O., Gao, T., et al.: “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015). https://doi.org/10.1126/science.aab1595

    Article  PubMed  Google Scholar 

  18. Kim, H., Hong, J., Park, K.Y., et al.: Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114, 11788–11827 (2014). https://doi.org/10.1021/cr500232y

    Article  CAS  PubMed  Google Scholar 

  19. Wang, Y.S., Liu, J., Lee, B., et al.: Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nat. Commun. 6, 1–10 (2015). https://doi.org/10.1038/ncomms7401

    Article  CAS  Google Scholar 

  20. Whitacre, J.F., Tevar, A., Sharma, S.: Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochem. Commun. 12, 463–466 (2010). https://doi.org/10.1016/j.elecom.2010.01.020

    Article  CAS  Google Scholar 

  21. Park, S.I., Gocheva, I., Okada, S., et al.: Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries. J. Electrochem. Soc. 158, A1067 (2011). https://doi.org/10.1149/1.3611434

    Article  CAS  Google Scholar 

  22. Qiu, S., Wu, X.Y., Wang, M.Y., et al.: NASICON-type Na3Fe2(PO4)3 as a low-cost and high-rate anode material for aqueous sodium-ion batteries. Nano Energy 64, 103941 (2019). https://doi.org/10.1016/j.nanoen.2019.103941

    Article  CAS  Google Scholar 

  23. Zhang, Y.D., An, Y.F., Yin, B., et al.: A novel aqueous ammonium dual-ion battery based on organic polymers. J. Mater. Chem. A 7, 11314–11320 (2019). https://doi.org/10.1039/c9ta00254e

    Article  CAS  Google Scholar 

  24. Luo, J.Y., Xia, Y.Y.: Aqueous lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability. Adv. Funct. Mater. 17, 3877–3884 (2007). https://doi.org/10.1002/adfm.200700638

    Article  CAS  Google Scholar 

  25. Masquelier, C., Croguennec, L.: Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem. Rev. 113, 6552–6591 (2013). https://doi.org/10.1021/cr3001862

    Article  CAS  PubMed  Google Scholar 

  26. Nevers, D.R., Brushett, F.R., Wheeler, D.R.: Engineering radical polymer electrodes for electrochemical energy storage. J. Power Sources 352, 226–244 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.077

    Article  CAS  Google Scholar 

  27. Eftekhari, A.: Potassium secondary cell based on Prussian blue cathode. J. Power Sources 126, 221–228 (2004). https://doi.org/10.1016/j.jpowsour.2003.08.007

    Article  CAS  Google Scholar 

  28. Luo, J.H., Sun, S.X., Peng, J., et al.: Graphene-roll-wrapped Prussian blue nanospheres as a high-performance binder-free cathode for sodium-ion batteries. ACS Appl. Mater. Interfaces 9, 25317–25322 (2017). https://doi.org/10.1021/acsami.7b06334

    Article  CAS  PubMed  Google Scholar 

  29. Wu, X.Y., Shao, M.M., Wu, C.H., et al.: Low defect FeFe(CN)6 framework as stable host material for high performance Li-ion batteries. ACS Appl. Mater. Interfaces 8, 23706–23712 (2016). https://doi.org/10.1021/acsami.6b06880

    Article  CAS  PubMed  Google Scholar 

  30. Asakura, D., Okubo, M., Mizuno, Y., et al.: Fabrication of a cyanide-bridged coordination polymer electrode for enhanced electrochemical ion storage ability. J. Phys. Chem. C 116, 8364–8369 (2012). https://doi.org/10.1021/jp2118949

    Article  CAS  Google Scholar 

  31. Asakura, D., Li, C.H., Mizuno, Y., et al.: Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: core@shell nanoparticles with enhanced cyclability. J. Am. Chem. Soc. 135, 2793–2799 (2013). https://doi.org/10.1021/ja312160v

    Article  CAS  PubMed  Google Scholar 

  32. Pasta, M., Wessells, C.D., Liu, N., et al.: Full open-framework batteries for stationary energy storage. Nat. Commun. 5, 1–9 (2014). https://doi.org/10.1038/ncomms4007

    Article  CAS  Google Scholar 

  33. Wang, L., Song, J., Qiao, R.M., et al.: Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries. J. Am. Chem. Soc. 137, 2548–2554 (2015). https://doi.org/10.1021/ja510347s

    Article  CAS  PubMed  Google Scholar 

  34. You, Y., Wu, X.L., Yin, Y.X., et al.: A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. J. Mater. Chem. A 1, 14061 (2013). https://doi.org/10.1039/c3ta13223d

    Article  CAS  Google Scholar 

  35. Wu, X.Y., Deng, W.W., Qian, J.F., et al.: Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries. J. Mater. Chem. A 1, 10130 (2013). https://doi.org/10.1039/c3ta12036h

    Article  CAS  Google Scholar 

  36. Imanishi, N., Morikawa, T., Kondo, J., et al.: Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary battery. J. Power Sources 79, 215–219 (1999). https://doi.org/10.1016/s0378-7753(99)00061-0

    Article  CAS  Google Scholar 

  37. Jiang, Y.Z., Yu, S.L., Wang, B.Q., et al.: Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv. Funct. Mater. 26, 5315–5321 (2016). https://doi.org/10.1002/adfm.201600747

    Article  CAS  Google Scholar 

  38. Liu, Q.N., Hu, Z., Chen, M.Z., et al.: The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides versus Prussian blue analogs. Adv. Funct. Mater. 30, 1909530 (2020). https://doi.org/10.1002/adfm.201909530

    Article  CAS  Google Scholar 

  39. Goda, E.S., Lee, S., Sohail, M., et al.: Prussian blue and its analogues as advanced supercapacitor electrodes. J. Energy Chem. 50, 206–229 (2020). https://doi.org/10.1016/j.jechem.2020.03.031

    Article  Google Scholar 

  40. Rajagopalan, R., Tang, Y.G., Ji, X.B., et al.: Advancements and challenges in potassium ion batteries: a comprehensive review. Adv. Funct. Mater. 30, 1909486 (2020). https://doi.org/10.1002/adfm.201909486

    Article  CAS  Google Scholar 

  41. Lee, H.W., Wang, R.Y., Pasta, M., et al.: Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat. Commun. 5, 1–6 (2014). https://doi.org/10.1038/ncomms6280

    Article  CAS  Google Scholar 

  42. Xiao, B.W.: Intercalated water in aqueous batteries. Carbon Energy 2, 251–264 (2020). https://doi.org/10.1002/cey2.55

    Article  CAS  Google Scholar 

  43. Tansel, B.: Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: hydrated radius, hydration free energy and viscous effects. Sep. Purif. Technol. 86, 119–126 (2012). https://doi.org/10.1016/j.seppur.2011.10.033

    Article  CAS  Google Scholar 

  44. Wu, X.Y., Xu, Y.K., Jiang, H., et al.: NH4+ topotactic insertion in berlin green: an exceptionally long-cycling cathode in aqueous ammonium-ion batteries. ACS Appl. Energy Mater. 1, 3077–3083 (2018). https://doi.org/10.1021/acsaem.8b00789

    Article  CAS  Google Scholar 

  45. Wessells, C.D., Peddada, S.V., McDowell, M.T., et al.: The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes. J. Electrochem. Soc. 159, A98–A103 (2011). https://doi.org/10.1149/2.060202jes

    Article  CAS  Google Scholar 

  46. Wang, R.Y., Wessells, C.D., Huggins, R.A., et al.: Highly reversible open framework nanoscale electrodes for divalent ion batteries. Nano Lett. 13, 5748–5752 (2013). https://doi.org/10.1021/nl403669a

    Article  CAS  PubMed  Google Scholar 

  47. Zhou, A.X., Jiang, L.W., Yue, J.M., et al.: Water-in-salt electrolyte promotes high-capacity FeFe(CN)6 cathode for aqueous Al-ion battery. ACS Appl. Mater. Interfaces 11, 41356–41362 (2019). https://doi.org/10.1021/acsami.9b14149

    Article  CAS  PubMed  Google Scholar 

  48. Yang, Q., Mo, F.N., Liu, Z.X., et al.: Activating C-coordinated iron of iron hexacyanoferrate for Zn hybrid-ion batteries with 10,000-cycle lifespan and superior rate capability. Adv. Mater. (2019). https://doi.org/10.1002/adma.201901521

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wu, X.Y., Markir, A., Xu, Y.K., et al.: A rechargeable battery with an iron metal anode. Adv. Funct. Mater. 29, 1900911 (2019). https://doi.org/10.1002/adfm.201900911

    Article  CAS  Google Scholar 

  50. Wang, R.Y., Shyam, B., Stone, K.H., et al.: Reversible multivalent (monovalent, divalent, trivalent) ion insertion in open framework materials. Adv. Energy Mater. 5, 1401869 (2015). https://doi.org/10.1002/aenm.201401869

    Article  CAS  Google Scholar 

  51. Guo, X.Y., Wang, Z.B., Deng, Z., et al.: Water contributes to higher energy density and cycling stability of Prussian blue analogue cathodes for aqueous sodium-ion batteries. Chem. Mater. 31, 5933–5942 (2019). https://doi.org/10.1021/acs.chemmater.9b02269

    Article  CAS  Google Scholar 

  52. Neff, V.D.: Electrochemical oxidation and reduction of thin films of Prussian blue. J. Electrochem. Soc. 125, 886–887 (1978). https://doi.org/10.1149/1.2131575

    Article  CAS  Google Scholar 

  53. Ellis, D., Eckhoff, M., Neff, V.D.: Electrochromism in the mixed-valence hexacyanides. 1. Voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian blue. J. Phys. Chem. 85, 1225–1231 (1981). https://doi.org/10.1021/j150609a026

    Article  CAS  Google Scholar 

  54. Itaya, K., Ataka, T., Toshima, S.: Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. J. Am. Chem. Soc. 104, 4767–4772 (1982). https://doi.org/10.1021/ja00382a006

    Article  CAS  Google Scholar 

  55. Itaya, K., Uchida, I., Neff, V.D.: Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc. Chem. Res. 19, 162–168 (1986). https://doi.org/10.1021/ar00126a001

    Article  CAS  Google Scholar 

  56. Karyakin, A.A.: Prussian blue and its analogues: electrochemistry and analytical applications. Electroanalysis 13, 813–819 (2001). https://doi.org/10.1002/1521-4109(200106)13:10813:aid-elan813%3e3.0.co;2-z

    Article  CAS  Google Scholar 

  57. Scholz, F., Dostal, A.: The formal potentials of solid metal hexacyanometalates. Angew. Chem. Int. Ed. Engl. 34, 2685–2687 (1996). https://doi.org/10.1002/anie.199526851

    Article  Google Scholar 

  58. Yang, C., Chen, J., Ji, X., et al.: Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite. Nature 569, 245–250 (2019). https://doi.org/10.1038/s41586-019-1175-6

    Article  CAS  PubMed  Google Scholar 

  59. Yang, C.Y., Suo, L.M., Borodin, O., et al.: Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility. Proc. Natl. Acad. Sci. 114, 6197–6202 (2017). https://doi.org/10.1073/pnas.1703937114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang, Q., Wang, W., Li, H., et al.: Investigation of iron hexacyanoferrate as a high rate cathode for aqueous batteries: sodium-ion batteries and lithium-ion batteries. Electrochim. Acta 270, 96–103 (2018). https://doi.org/10.1016/j.electacta.2018.02.171

    Article  CAS  Google Scholar 

  61. Ling, C., Chen, J.J., Mizuno, F.: First-principles study of alkali and alkaline earth ion intercalation in iron hexacyanoferrate: the important role of ionic radius. J. Phys. Chem. C 117, 21158–21165 (2013). https://doi.org/10.1021/jp4078689

    Article  CAS  Google Scholar 

  62. Wessells, C.D., Peddada, S.V., Huggins, R.A., et al.: Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 11, 5421–5425 (2011). https://doi.org/10.1021/nl203193q

    Article  CAS  PubMed  Google Scholar 

  63. Wu, X.Y., Cao, Y.L., Ai, X.P., et al.: A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry. Electrochem. Commun. 31, 145–148 (2013). https://doi.org/10.1016/j.elecom.2013.03.013

    Article  CAS  Google Scholar 

  64. Wessells, C.D., Huggins, R.A., Cui, Y.: Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2, 550 (2011). https://doi.org/10.1038/ncomms1563

    Article  CAS  PubMed  Google Scholar 

  65. Wu, X.Y., Sun, M.Y., Shen, Y.F., et al.: Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2 (PO4)3 intercalation chemistry. ChemSusChem 7, 407–411 (2014). https://doi.org/10.1002/cssc.201301036

    Article  CAS  PubMed  Google Scholar 

  66. Fernández-Ropero, A.J., Piernas-Muñoz, M.J., Castillo-Martínez, E., et al.: Electrochemical characterization of NaFe2(CN)6 Prussian blue as positive electrode for aqueous sodium-ion batteries. Electrochim. Acta 210, 352–357 (2016). https://doi.org/10.1016/j.electacta.2016.05.176

    Article  CAS  Google Scholar 

  67. Wu, X.Y., Sun, M.Y., Guo, S.M., et al.: Vacancy-free Prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries. ChemNanoMat 1, 188–193 (2015). https://doi.org/10.1002/cnma.201500021

    Article  CAS  Google Scholar 

  68. Nakamoto, K., Sakamoto, R., Ito, M., et al.: Effect of concentrated electrolyte on aqueous sodium-ion battery with sodium manganese hexacyanoferrate cathode. Electrochemistry 85, 179–185 (2017). https://doi.org/10.5796/electrochemistry.85.179

    Article  CAS  Google Scholar 

  69. Wessells, C.D., McDowell, M.T., Peddada, S.V., et al.: Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage. ACS Nano 6, 1688–1694 (2012). https://doi.org/10.1021/nn204666v

    Article  CAS  PubMed  Google Scholar 

  70. Wang, J., Mi, C.H., Nie, P., et al.: Sodium-rich iron hexacyanoferrate with nickel doping as a high performance cathode for aqueous sodium ion batteries. J. Electroanal. Chem. 818, 10–18 (2018). https://doi.org/10.1016/j.jelechem.2018.04.011

    Article  CAS  Google Scholar 

  71. Li, W.F., Zhang, F., Xiang, X.D., et al.: Electrochemical properties and redox mechanism of Na2Ni0.4Co0.6[Fe(CN)6] nanocrystallites as high-capacity cathode for aqueous sodium-ion batteries. J. Phys. Chem. C 121, 27805–27812 (2017). https://doi.org/10.1021/acs.jpcc.7b07920

    Article  CAS  Google Scholar 

  72. Wu, X.Y., Luo, Y., Sun, M.Y., et al.: Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries. Nano Energy 13, 117–123 (2015). https://doi.org/10.1016/j.nanoen.2015.02.006

    Article  CAS  Google Scholar 

  73. Wu, X.Y., Wu, C.H., Wei, C.X., et al.: Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 8, 5393–5399 (2016). https://doi.org/10.1021/acsami.5b12620

    Article  CAS  PubMed  Google Scholar 

  74. Lu, Y.H., Wang, L., Cheng, J.G., et al.: Prussian blue: a new framework of electrode materials for sodium batteries. Chem. Commun. 48, 6544 (2012). https://doi.org/10.1039/c2cc31777j

    Article  CAS  Google Scholar 

  75. Azhar, A., Li, Y.C., Cai, Z.X., et al.: Nanoarchitectonics: a new materials horizon for Prussian blue and its analogues. Bull. Chem. Soc. Jpn. 92, 875–904 (2019). https://doi.org/10.1246/bcsj.20180368

    Article  CAS  Google Scholar 

  76. Li, W.J., Han, C., Cheng, G., et al.: Chemical properties, structural properties, and energy storage applications of Prussian blue analogues. Small 15, e1900470 (2019). https://doi.org/10.1002/smll.201900470

    Article  CAS  PubMed  Google Scholar 

  77. de Wet, J.F., Rolle, R.: On the existence and Autoreduction of Iron(III)-hexacyanoferrate(III). Z. Anorg. Allg. Chem. 336, 96–103 (1965). https://doi.org/10.1002/zaac.19653360114

    Article  Google Scholar 

  78. Walker, R.G., Watkins, K.O.: Kinetics of complex formation between hexacyanoferrate(III) ions and iron(III) to form FeFe(CN)6 (Prussian brown). Inorg. Chem. 7, 885–888 (1968). https://doi.org/10.1021/ic50063a009

    Article  CAS  Google Scholar 

  79. Kumar, A., Yusuf, S.M., Keller, L.: Structural and magnetic properties ofFe[Fe(CN)6]·4H2O. Phys. Rev. B 71, 054414 (2005). https://doi.org/10.1103/physrevb.71.054414

    Article  Google Scholar 

  80. Buser, H.J., Ludi, A., Petter, W., et al.: Single-crystal study of Prussian blue: Fe4[Fe(CN)6]3·14H2O. J. Chem. Soc. Chem. Commun. (1972). https://doi.org/10.1039/c39720001299

    Article  Google Scholar 

  81. You, Y., Wu, X.L., Yin, Y.X., et al.: High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 7, 1643–1647 (2014). https://doi.org/10.1039/c3ee44004d

    Article  CAS  Google Scholar 

  82. Hu, M., Ishihara, S., Ariga, K., et al.: Kinetically controlled crystallization for synthesis of monodispersed coordination polymer nanocubes and their self-assembly to periodic arrangements. Chem. Eur. J. 19, 1882–1885 (2013). https://doi.org/10.1002/chem.201203138

    Article  CAS  PubMed  Google Scholar 

  83. Liu, Y., Qiao, Y., Zhang, W.X., et al.: Sodium storage in Na-rich NaxFeFe(CN)6 nanocubes. Nano Energy 12, 386–393 (2015). https://doi.org/10.1016/j.nanoen.2015.01.012

    Article  CAS  Google Scholar 

  84. Shao, T.L., Li, C., Liu, C.Y., et al.: Electrolyte regulation enhances the stability of Prussian blue analogues in aqueous Na-ion storage. J. Mater. Chem. A 7, 1749–1755 (2019). https://doi.org/10.1039/c8ta10860a

    Article  CAS  Google Scholar 

  85. Xu, L., Li, H., Wu, X.Y., et al.: Well-defined Na2Zn3[Fe(CN)6]2 nanocrystals as a low-cost and cycle-stable cathode material for Na-ion batteries. Electrochem. Commun. 98, 78–81 (2019). https://doi.org/10.1016/j.elecom.2018.11.019

    Article  CAS  Google Scholar 

  86. Peng, J., Wang, J.S., Yi, H.C., et al.: A dual-insertion type sodium-ion full cell based on high-quality ternary-metal Prussian blue analogs. Adv. Energy Mater. 8, 1702856 (2018). https://doi.org/10.1002/aenm.201702856

    Article  CAS  Google Scholar 

  87. Yan, C.X., Zhao, A.L., Zhong, F.P., et al.: A low-defect and Na-enriched Prussian blue lattice with ultralong cycle life for sodium-ion battery cathode. Electrochim. Acta 332, 135533 (2020). https://doi.org/10.1016/j.electacta.2019.135533

    Article  CAS  Google Scholar 

  88. Xu, Y., Wan, J., Huang, L., et al.: Dual redox-active copper hexacyanoferrate nanosheets as cathode materials for advanced sodium-ion batteries. Energy Storage Mater. 33, 432–441 (2020). https://doi.org/10.1016/j.ensm.2020.08.008

    Article  Google Scholar 

  89. Song, J., Wang, L., Lu, Y.H., et al.: Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J. Am. Chem. Soc. 137, 2658–2664 (2015). https://doi.org/10.1021/ja512383b

    Article  CAS  PubMed  Google Scholar 

  90. Li, W.J., Chou, S.L., Wang, J.Z., et al.: Multifunctional conducing polymer coated Na1+xMnFe(CN)6 cathode for sodium-ion batteries with superior performance via a facile and one-step chemistry approach. Nano Energy 13, 200–207 (2015). https://doi.org/10.1016/j.nanoen.2015.02.019

    Article  CAS  Google Scholar 

  91. Nakamoto, K., Sakamoto, R., Sawada, Y., et al.: Prussian blue-type electrodes: over 2 V aqueous sodium-ion battery with Prussian blue-type electrodes. Small Methods 3, 1970010 (2019). https://doi.org/10.1002/smtd.201970010

    Article  Google Scholar 

  92. Han, J., Zhang, H., Varzi, A., et al.: Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries. ChemSusChem 11, 3704–3707 (2018). https://doi.org/10.1002/cssc.201801930

    Article  CAS  PubMed  Google Scholar 

  93. Jiang, L.W., Liu, L.L., Yue, J.M., et al.: High-voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte. Adv. Mater. 32, 1904427 (2020). https://doi.org/10.1002/adma.201904427

    Article  CAS  Google Scholar 

  94. Betz, J., Bieker, G., Meister, P., et al.: Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Adv. Energy Mater. 9, 1803170 (2019). https://doi.org/10.1002/aenm.201803170

    Article  CAS  Google Scholar 

  95. Paulitsch, B., Yun, J., Bandarenka, A.S.: Electrodeposited Na2VOx[Fe(CN)6] films as a cathode material for aqueous Na-ion batteries. ACS Appl. Mater. Inter. 9, 8107–8112 (2017). https://doi.org/10.1021/acsami.6b15666

    Article  CAS  Google Scholar 

  96. Shao, M.M., Wang, B., Liu, M.C., et al.: A high-voltage and cycle stable aqueous rechargeable Na-ion battery based on Na2Zn3[Fe(CN)6]2–NaTi2(PO4)3 intercalation chemistry. ACS Appl. Energy Mater. 2, 5809–5815 (2019). https://doi.org/10.1021/acsaem.9b00935

    Article  CAS  Google Scholar 

  97. Chen, L., Zhang, L.Y., Zhou, X.F., et al.: Aqueous batteries based on mixed monovalence metal ions: a new battery family. ChemSusChem 7, 2295–2302 (2014). https://doi.org/10.1002/cssc.201402084

    Article  CAS  PubMed  Google Scholar 

  98. Lee, J.H., Ali, G., Kim, D.H., et al.: Metal-organic framework cathodes based on a vanadium hexacyanoferrate Prussian blue analogue for high-performance aqueous rechargeable batteries. Adv. Energy Mater. 7, 1601491 (2017). https://doi.org/10.1002/aenm.201601491

    Article  CAS  Google Scholar 

  99. Chen, H., Zhang, Z., Wei, Z., et al.: Use of a water-in-salt electrolyte to avoid organic material dissolution and enhance the kinetics of aqueous potassium ion batteries. Sustain. Energy Fuels 4, 128–131 (2020)

    Article  CAS  Google Scholar 

  100. Leonard, D.P., Wei, Z.X., Chen, G., et al.: Water-in-salt electrolyte for potassium-ion batteries. ACS Energy Lett. 3, 373–374 (2018). https://doi.org/10.1021/acsenergylett.8b00009

    Article  CAS  Google Scholar 

  101. Ren, W.H., Chen, X.J., Zhao, C.: Ultrafast aqueous potassium-ion batteries cathode for stable intermittent grid-scale energy storage. Adv. Energy Mater. 8, 1801413 (2018). https://doi.org/10.1002/aenm.201801413

    Article  CAS  Google Scholar 

  102. Bie, X.F., Kubota, K., Hosaka, T., et al.: A novel K-ion battery: hexacyanoferrate(ii)/graphite cell. J. Mater. Chem. A 5, 4325–4330 (2017). https://doi.org/10.1039/c7ta00220c

    Article  CAS  Google Scholar 

  103. Phadke, S., Mysyk, R., Anouti, M.: Effect of cation (Li+, Na+, K+, Rb+, Cs+) in aqueous electrolyte on the electrochemical redox of Prussian blue analogue (PBA) cathodes. J. Energy Chem. 40, 31–38 (2020). https://doi.org/10.1016/j.jechem.2019.01.025

    Article  Google Scholar 

  104. Su, D.W., McDonagh, A., Qiao, S.Z., et al.: High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 29, 1604007 (2017). https://doi.org/10.1002/adma.201604007

    Article  CAS  Google Scholar 

  105. He, G., Nazar, L.F.: Crystallite size control of Prussian white analogues for nonaqueous potassium-ion batteries. ACS Energy Lett. 2, 1122–1127 (2017). https://doi.org/10.1021/acsenergylett.7b00179

    Article  CAS  Google Scholar 

  106. Jiang, L.W., Lu, Y.X., Zhao, C.L., et al.: Building aqueous K-ion batteries for energy storage. Nat. Energy 4, 495–503 (2019). https://doi.org/10.1038/s41560-019-0388-0

    Article  CAS  Google Scholar 

  107. Wu, X.Y., Jian, Z.L., Li, Z.F., et al.: Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries. Electrochem. Commun. 77, 54–57 (2017). https://doi.org/10.1016/j.elecom.2017.02.012

    Article  CAS  Google Scholar 

  108. Matsuda, T., Kim, J., Moritomo, Y.: Symmetry switch of cobalt ferrocyanide framework by alkaline cation exchange. J. Am. Chem. Soc. 132, 12206–12207 (2010). https://doi.org/10.1021/ja105482k

    Article  CAS  PubMed  Google Scholar 

  109. Takachi, M., Matsuda, T., Moritomo, Y.: Cobalt hexacyanoferrate as cathode material for Na+ secondary battery. Appl. Phys. Express 6, 025802 (2013). https://doi.org/10.7567/apex.6.025802

    Article  Google Scholar 

  110. Zhang, Q., Wang, Z.J., Zhang, S.L., et al.: Cathode materials for potassium-ion batteries: current status and perspective. Electrochem. Energy Rev. 1, 625–658 (2018). https://doi.org/10.1007/s41918-018-0023-y

    Article  CAS  Google Scholar 

  111. Chen, L., Gu, Q.W., Zhou, X.F., et al.: New-concept batteries based on aqueous Li+/Na+ mixed-ion electrolytes. Sci. Rep. 3, 1–7 (2013). https://doi.org/10.1038/srep01946

    Article  CAS  Google Scholar 

  112. Dahn, J.R., Seel, J.A.: Energy and capacity projections for practical dual-graphite cells. J. Electrochem. Soc. 147, 899 (2000). https://doi.org/10.1149/1.1393289

    Article  CAS  Google Scholar 

  113. Wu, X.Y., Qi, Y.T., Hong, J.J., et al.: Rocking-chair ammonium-ion battery: a highly reversible aqueous energy storage system. Angew. Chem. 129, 13206–13210 (2017). https://doi.org/10.1002/ange.201707473

    Article  Google Scholar 

  114. Li, C., Wu, J., Ma, F., et al.: High-rate and high-voltage aqueous rechargeable zinc ammonium hybrid battery from selective cation intercalation cathode. ACS Appl. Energy Mater. 2, 6984–6989 (2019)

    Article  CAS  Google Scholar 

  115. Knight, C., Voth, G.A.: The curious case of the hydrated proton. Acc. Chem. Res. 45, 101–109 (2012). https://doi.org/10.1021/ar200140h

    Article  CAS  PubMed  Google Scholar 

  116. Yan, L., Huang, J.H., Guo, Z.W., et al.: Solid-state proton battery operated at ultralow temperature. ACS Energy Lett. 5, 685–691 (2020). https://doi.org/10.1021/acsenergylett.0c00109

    Article  CAS  Google Scholar 

  117. Crumbliss, A.L., Lugg, P.S., Morosoff, N.: Alkali metal cation effects in a Prussian blue surface modified electrode. Inorg. Chem. 23, 4701–4708 (1984). https://doi.org/10.1021/ic00194a057

    Article  CAS  Google Scholar 

  118. Lee, H.W., Pasta, M., Wang, R.Y., et al.: Effect of the alkali insertion ion on the electrochemical properties of nickel hexacyanoferrate electrodes. Faraday Discuss. 176, 69–81 (2014). https://doi.org/10.1039/c4fd00147h

    Article  CAS  PubMed  Google Scholar 

  119. Feiner, A.S., McEvoy, A.J.: The Nernst equation. J. Chem. Educ. 71, 493 (1994). https://doi.org/10.1021/ed071p493

    Article  CAS  Google Scholar 

  120. Wang, X.F., Bommier, C., Jian, Z.L., et al.: Hydronium-ion batteries with perylenetetracarboxylic dianhydride crystals as an electrode. Angew. Chem. 129, 2955–2959 (2017). https://doi.org/10.1002/ange.201700148

    Article  Google Scholar 

  121. Agmon, N.: The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995). https://doi.org/10.1016/0009-2614(95)00905-j

    Article  CAS  Google Scholar 

  122. Cukierman, S.: Et tu, Grotthuss! And other unfinished stories. Biochim. Biophys. Acta 1757, 876–885 (2006). https://doi.org/10.1016/j.bbabio.2005.12.001

    Article  CAS  PubMed  Google Scholar 

  123. Wu, X.Y., Hong, J.J., Shin, W., et al.: Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nat. Energy 4, 123–130 (2019). https://doi.org/10.1038/s41560-018-0309-7

    Article  CAS  Google Scholar 

  124. Wu, X.Y., Qiu, S., Xu, Y.K., et al.: Hydrous nickel–iron Turnbull’s blue as a high-rate and low-temperature proton electrode. ACS Appl. Mater. Inter. 12, 9201–9208 (2020). https://doi.org/10.1021/acsami.9b20320

    Article  CAS  Google Scholar 

  125. Jiang, H., Shin, W., Ma, L., et al.: A high-rate aqueous proton battery delivering power below − 78 ºC via an unfrozen phosphoric acid. Adv. Energy Mater. 10, 2000968 (2020). https://doi.org/10.1002/aenm.202000968

    Article  CAS  Google Scholar 

  126. Liang, G.J., Mo, F.N., Yang, Q., et al.: Commencing an acidic battery based on a copper anode with ultrafast proton-regulated kinetics and superior dendrite-free property. Adv. Mater. 31, 1905873 (2019). https://doi.org/10.1002/adma.201905873

    Article  CAS  Google Scholar 

  127. Wang, Y., Zhong, H., Hu, L., et al.: Manganese hexacyanoferrate/MnO2 composite nanostructures as a cathode material for supercapacitors. J. Mater. Chem. A 1, 2621–2630 (2013). https://doi.org/10.1039/c2ta01354a

    Article  CAS  Google Scholar 

  128. Wu, X.Y., Xu, Y.K., Zhang, C., et al.: Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. J. Am. Chem. Soc. 141, 6338–6344 (2019). https://doi.org/10.1021/jacs.9b00617

    Article  CAS  PubMed  Google Scholar 

  129. Lee, E., Kim, D.H., Hwang, J., et al.: Soft X-ray absorption spectroscopy study of Prussian blue analogue ACo[Fe(CN)6]H2O nano-particles (A = Na, K). J. Korean Phys. Soc. 62, 1910–1913 (2013). https://doi.org/10.3938/jkps.62.1910

    Article  CAS  Google Scholar 

  130. Kamioka, H., Nakada, F., Igarashi, K., et al.: Transient photo-induced phenomena in vacancy-controlled Co-Fe cyanides. J. Phys. Conf. Ser. 148, 012031 (2009). https://doi.org/10.1088/1742-6596/148/1/012031

    Article  CAS  Google Scholar 

  131. Igarashi, K., Nakada, F., Moritomo, Y.: Electronic structure of hole-doped Co–Fe cyanides: Na1.60–δCo[Fe(CN)6]0.90·2.9H2O(0.0 ≤ δ ≤ 0.85). Phys. Rev. B 78, 235106 (2008). https://doi.org/10.1103/physrevb.78.235106

    Article  Google Scholar 

  132. Bácskai, J., Martinusz, K., Czirók, E., et al.: Polynuclear nickel hexacyanoferrates: monitoring of film growth and hydrated counter-cation flux/storage during redox reactions. J. Electroanal. Chem. 385, 241–248 (1995). https://doi.org/10.1016/0022-0728(94)03788-5

    Article  Google Scholar 

  133. García-Jareño, J.J., Giménez-Romero, D., Vicente, F., et al.: EIS and AC-electrogravimetry study of Pb films in KCl, NaCl, and CsCl aqueous solutions. J. Phys. Chem. B 107, 11321–11330 (2003). https://doi.org/10.1021/jp035387h

    Article  CAS  Google Scholar 

  134. Agrisuelas, J., García-Jareño, J.J., Vicente, F.: Identification of processes associated with different iron sites in the Prussian blue structure by in situ electrochemical, gravimetric, and spectroscopic techniques in the DC and AC regimes. J. Phys. Chem. C 116, 1935–1947 (2012). https://doi.org/10.1021/jp207269c

    Article  CAS  Google Scholar 

  135. Ventosa, E., Paulitsch, B., Marzak, P., et al.: The mechanism of the interfacial charge and mass transfer during intercalation of alkali metal cations. Adv. Sci. 3, 1600211 (2016). https://doi.org/10.1002/advs.201600211

    Article  CAS  Google Scholar 

  136. Yun, J., Pfisterer, J., Bandarenka, A.S.: How simple are the models of Na intercalation in aqueous media? Energy Environ. Sci. 9, 955–961 (2016). https://doi.org/10.1039/c5ee03197d

    Article  CAS  Google Scholar 

  137. Niu, C.J., Lee, H., Chen, S.R., et al.: High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4, 551–559 (2019). https://doi.org/10.1038/s41560-019-0390-6

    Article  CAS  Google Scholar 

  138. Wan, P., Xie, H., Zhang, N., et al.: Stepwise hollow Prussian blue nanoframes/carbon nanotubes composite film as ultrahigh rate sodium ion cathode. Adv. Funct. Mater. 30, 2002624 (2020). https://doi.org/10.1002/adfm.202002624

    Article  CAS  Google Scholar 

  139. Yuan, X.H., Ma, F.X., Zuo, L.Q., et al.: Latest advances in high-voltage and high-energy-density aqueous rechargeable batteries. Electrochem. Energy Rev. (2020). https://doi.org/10.1007/s41918-020-00075-2

    Article  Google Scholar 

  140. Shin, J., Choi, J.W.: Opportunities and reality of aqueous rechargeable batteries. Adv. Energy Mater. 10, 2001386 (2020). https://doi.org/10.1002/aenm.202001386

    Article  CAS  Google Scholar 

  141. Luo, J.Y., Cui, W.J., He, P., et al.: Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760–765 (2010). https://doi.org/10.1038/nchem.763

    Article  CAS  PubMed  Google Scholar 

  142. Borodin, O., Self, J., Persson, K.A., et al.: Uncharted waters: super-concentrated electrolytes. Joule 4, 69–100 (2020). https://doi.org/10.1016/j.joule.2019.12.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

X. Ji thanks the financial support from U.S. National Science Foundation Award No. DMR 2004636.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianyong Wu or Xiulei Ji.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, S., Xu, Y., Wu, X. et al. Prussian Blue Analogues as Electrodes for Aqueous Monovalent Ion Batteries. Electrochem. Energy Rev. 5, 242–262 (2022). https://doi.org/10.1007/s41918-020-00088-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-020-00088-x

Keywords

Navigation