Skip to main content
Log in

From biopolymer duplication to membrane duplication and beyond

  • Review Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

The relationship between biopolymer duplication and membranes compartmentation is analyzed, by stressing their intertwinement and the different monomers that determine their forms of aggregation (linear and circular) with their functions. Both polymers and membranes are prebiotic forms of molecular assemblies, but in their integration the seed of life emerges. From membranes hosting a replicative metabolism cells stem as living unities, where an almost perfect synthesis is realized between metabolism and duplication. What is missing to perfection becomes the basis of evolution. The whole logic of the processes at the origin of life is reconstructed in general terms, in the line of Manca (Infobiotics: information in biotic systems. Springer, New York, 2013), Manca (J Proteom Bioinform 11(7), 135–137, 2018) and Manca and Santagata (Un meraviglioso accidente. La nascita della vita. Mondadori, Italy, 2018), with no biochemistry detail, but only on the basis of the needs for representing, conserving, developing, and transmitting biological information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Alberts, B., et al. (2014). Essential cell biology. New York: Garland Science.

    Google Scholar 

  2. Bonnici, V., & Manca, V. (2016). Informational laws of genome structures. Scientific Reports, 6, 28840.

    Article  Google Scholar 

  3. Bonnici, V., & Manca, V. (2018). An informational test for random finite strings. Entropy, 20(12), 934.

    Article  Google Scholar 

  4. Ciobanu, G., Păun, G., & Pérez-Jiménez, M.J. (Eds.). (2006). Applications of membrane computing. New York: Springer.

  5. Eigen, M., & Schuster, P. (1979). The hypercycle—a principle of natural self-organization. New York: Springer.

    Google Scholar 

  6. Gilbert, W. (1986). The RNA world. Nature, 319(6055), 618.

    Article  Google Scholar 

  7. Johnston, W. K., Unrau, P. J., Lawrence, M. S., Glasner, M. E., & Bartel, D. P. (2001). RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science, 292(5520), 1319–25.

    Article  Google Scholar 

  8. Manca, V. (2005). On the logic and geometry of bilinear forms. Fundamenta Informaticaer, 64(1–4), 261–273.

    MathSciNet  MATH  Google Scholar 

  9. Manca, V. (2013). Infobiotics: information in biotic systems. New York: Springer.

    Book  Google Scholar 

  10. Manca, V. (2017). The Principles of Informational Genomics. Theoretical Computer Science.

  11. Manca, V. (2018). A marvelous accident. The birth of life. Journal of Proteomics & Bioinformatics, 11(7), 135–137.

    Article  Google Scholar 

  12. Manca, V., & Franco, G. (2008). Computing by polymerase chain reaction. Mathematical Biosciences, 211, 282–298.

    Article  MathSciNet  Google Scholar 

  13. Manca, V. (2015). Research lines in infogenomics. Journal of Bioinformatics and Proteomics Review, 1(1), 1–4.

    MathSciNet  Google Scholar 

  14. Manca, V. (2015). Information theory in genome analysis. In G. Rozenberg, A. Salomaa, J. Sempere, & C. Zandron (Eds.), Membrane Computing, CMC16, 1–16. LNCS 9504. Springer, New York

  15. Manca, V., & Santagata, M. (2018). Un meraviglioso accidente. Mondadori: La nascita della vita.

    Google Scholar 

  16. Maynard Smith, J., & Szathmáry, E. (1995). The major transitions in evolution. Oxford: Oxford University Press.

    Google Scholar 

  17. Noble, D. (2015). Conrad Waddington and the origin of epigenetics. Journal of Experimental Biology, 218, 816–818.

    Article  Google Scholar 

  18. Orgel, L. (2000). Origin of life. A simpler nucleic acid. Science, 290(5495), 1306–7.

    Article  Google Scholar 

  19. Păun, G. (Ed.). (1995). Artificial Life. Grammatical Models. An Introduction. Black Sea University Press, Oxford.

  20. Păun, G. (2002). Membrane computing. An introduction. New York: Springer.

    Book  Google Scholar 

  21. Păun, G., Rozenberg, G., & Salomaa, A. (Eds.). (2010). The Oxford handbook of membrane computing. Oxford University Press, Oxford.

  22. Rosenblueth, A., Wiener, N., & Bigelow, J. (1943). Behavior, purpose and teleology. Philosophy of Science, 10, 18–24.

    Article  Google Scholar 

  23. Schrödinger, E. (1944). What is life? The physical aspect of the living cell and mind. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  24. Theobald, D. L. (2010). A formal test of the theory of universal common ancestry. Nature, 465(7295), 219–22.

    Article  Google Scholar 

  25. Wiener, N. (1948). Cybernetics, or control and communication in the animal and the machine. Cambridge: The MIT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Manca.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Paper presented as invited talk at CMC 20, August 5–8, 2019, Curtea de Arges, Romania.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manca, V. From biopolymer duplication to membrane duplication and beyond. J Membr Comput 1, 292–303 (2019). https://doi.org/10.1007/s41965-019-00018-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-019-00018-x

Keywords

Navigation