Skip to main content
Log in

Three Solutions for Impulsive Fractional Boundary Value Problems with \({\mathbf {p}}\)-Laplacian

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

The authors give sufficient conditions for the existence of at least three classical solutions to the nonlinear impulsive fractional boundary value problem with a p-Laplacian and Dirichlet conditions

$$\begin{aligned} {\left\{ \begin{array}{ll} D^{\alpha }_{T^-}\varPhi _p(^cD^{\alpha }_{0^+}u(t))+|u(t)|^{p-2}u(t)= \lambda f(t,u(t)), &{}t\ne t_j,\ \ t\in (0,T),\\ \varDelta (D^{\alpha -1}_{T^-}\varPhi _p(^cD^{\alpha }_{0^+}u))(t_j)=I_j(u(t_j)),\\ u(0)=u(T)=0, \end{array}\right. } \end{aligned}$$

where \(\alpha \in (\frac{1}{p}, 1]\) and \(p > 1\). Their approach is based on variational methods. The main result is illustrated with an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afrouzi, G.A., Caristi, G., Barilla, D., Moradi, S.: A variational approach to perturbed three-point boundary value problems of Kirchhoff-type. Complex Var. Elliptic Eqs. 62, 397–412 (2017)

    Article  MathSciNet  Google Scholar 

  2. Ahmad, B., Nieto, J.J.: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 58, 1838–1843 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bonanno, G., Candito, P.: Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities. J. Differ. Equ. 244, 3031–3059 (2008)

    Article  MathSciNet  Google Scholar 

  4. Bonanno, G., Candito, P.: Three solutions to a Neumann problem for elliptic equations involving the \(p\)-Laplacian. Archiv der Math. 80, 424–429 (2003)

    Article  MathSciNet  Google Scholar 

  5. Bonanno, G., D’Aguì, G.: Multiplicity results for a perturbed elliptic Neumann problem. Abstr. Appl. Anal. 2010(Art. ID 564363), 1–10 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Bonanno, G., Di Bella, B.: A boundary value problem for fourth-order elastic beam equations. J. Math. Anal. Appl. 343, 1166–1176 (2008)

    Article  MathSciNet  Google Scholar 

  7. Diethelm, K.: The Analysis of Fractional Differential Equation. Springer, Heidelberg (2010)

    Book  Google Scholar 

  8. Faraci, F.: Multiple solutions for two nonlinear problems involving the \(p\)-Laplacian. Nonlinear Anal. TMA 63, e1017–e1029 (2005)

    Article  Google Scholar 

  9. Galewski, M., Bisci, G.M.: Existence results for one-dimensional fractional equations. Math. Methods Appl. Sci. 39, 1480–1492 (2016)

    Article  MathSciNet  Google Scholar 

  10. Gao, Z., Yang, L., Liu, G.: Existence and uniqueness of solutions to impulsive fractional integro-differential equations with nonlocal conditions. Appl. Math. 4, 859–863 (2013)

    Article  Google Scholar 

  11. Graef, J.R., Heidarkhani, S., Kong, L., Moradi, S.: Existence results for impulsive fractional differential equations with \(p\)-Laplacian via variational methods. Math. Bohemica (to appear)

  12. Heidarkhani, S.: Multiple solutions for a nonlinear perturbed fractional boundary value problem. Dyn. Syst. Appl. 23, 317–331 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Heidarkhani, S., Afrouzi, G.A., Caristi, G., Henderson, J., Moradi, S.: A variational approach to difference equations. J. Differ. Equ. Appl. 22, 1761–1776 (2016)

    Article  MathSciNet  Google Scholar 

  14. Heidarkhani, S., Afrouzi, G.A., Ferrara, M., Moradi, S.: Variational approaches to impulsive elastic beam equations of Kirchhoff type. Complex Var. Elliptic Equ. 61, 931–968 (2016)

    Article  MathSciNet  Google Scholar 

  15. Heidarkhani, S., Cabada, A., Afrouzi, G.A., Moradi, S., Caristi, G.: A variational approach to perturbed impulsive fractional differential equations. J. Comput. Appl. Math. 341, 42–60 (2018)

    Article  MathSciNet  Google Scholar 

  16. Heidarkhani, S., Moradi, S.: Existence results for impulsive fractional differential equations with \(p\)-Laplacian via variational methods (preprint)

  17. Heidarkhani, S., Salari, A.: Nontrivial solutions for impulsive fractional differential problems through variational methods. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6396

    Article  MATH  Google Scholar 

  18. Heidarkhani, S., Zhao, Y., Caristi, G., Afrouzi, G.A., Moradi, S.: Infinitely many solutions for perturbed impulsive fractional differential problems. Appl. Anal. 96, 1401–1424 (2017)

    Article  MathSciNet  Google Scholar 

  19. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  Google Scholar 

  20. Jiao, F., Zhou, Y.: Existence results for fractional boundary value problem via critical point theory. Int. J. Bifur. Chaos Appl. Sci. Eng. 22, 1250086 (2012). (17 pages)

    Article  MathSciNet  Google Scholar 

  21. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  22. Kong, L.: Existence of solutions to boundary value problems arising from the fractional advection dispersion equation. Electron. J. Differ. Equ. 2013(106), 1–15 (2013)

    MathSciNet  Google Scholar 

  23. Molica Bisci, G., Rădulescu, V., Servadei, R.: Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, vol. 162. Cambridge University Press, Cambridge (2016)

  24. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  25. Wei, L., He, Z.: The applications of sums of ranges of accretive operators to nonlinear equations involving the \(p\)-Laplacian operator. Nonlinear Anal. TMA 24, 185–193 (1995)

    Article  MathSciNet  Google Scholar 

  26. Wei, L., Agarwal, R.P.: Existence of solutions to nonlinear Neumann boundary value problems with generalized \(p\)-Laplacian operator. Comput. Math. Appl. 56, 530–541 (2008)

    Article  MathSciNet  Google Scholar 

  27. Wang, Y., Liu, Y., Cui, Y.: Infinitely many solutions for impulsive fractional boundary value problem with \(p\)-Laplacian. Bound. Value Probl. 2018, 94 (2018)

    Article  MathSciNet  Google Scholar 

  28. Wang, J., Li, X., Wei, W.: On the natural solution of an impulsive fractional differential equation of order \(q \in (1,2)\). Commun. Nonlinear Sci. Numer. Simul. 17, 4384–4394 (2012)

    Article  MathSciNet  Google Scholar 

  29. Zeidler, E.: Nonlinear Functional Analysis and Its Applications, vol. II. Springer, Berlin (1985)

    Book  Google Scholar 

  30. Zhang, H., Li, Z.: Periodic and homoclinic solutions generated by impulses. Nonlinear Anal. RWA 12, 39–51 (2011)

    Article  MathSciNet  Google Scholar 

  31. Zhao, Y., Tang, L.: Multiplicity results for impulsive fractional differential equations with \(p\)-Laplacian via variational methods. Bound. Value Probl. 2017, 123 (2017)

    Article  MathSciNet  Google Scholar 

  32. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Graef.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Majid Gazor.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graef, J.R., Heidarkhani, S., Kong, L. et al. Three Solutions for Impulsive Fractional Boundary Value Problems with \({\mathbf {p}}\)-Laplacian. Bull. Iran. Math. Soc. 48, 1413–1433 (2022). https://doi.org/10.1007/s41980-021-00589-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-021-00589-5

Keywords

Mathematics Subject Classification

Navigation